Viruses and Nanotechnology pp 1-21

Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 327)

Chemical Modification of Viruses and Virus-Like Particles

Protein capsids derived from viruses may be modified by methods, generated, isolated, and purified on large scales with relative ease. In recent years, methods for their chemical derivatization have been employed to broaden the properties and functions accessible to investigators desiring monodisperse, atomic-resolution structures on the nanometer scale. Here we review the reactions and methods used in these endeavors, including the modification of lysine, cysteine, and tyrosine side chains, as well as the installation of unnatural amino acids, with particular attention to the special challenges imposed by the polyvalency and size of virus-based scaffolds.



Cowpea chlorotic mottle virus


Cowpea mosaic virus


Dimethyl sulfoxide


1-Ethyl-3-(3-dimethyllaminopropyl)carb odiimide hydrochloride


Hepatitis B virus


Heat shock protein


Methanococcus jannaschii heat shock protein


Magnesium monoper-oxyphthalate


Magnetic resonance imaging




Nudaurelia capensis ɷ virus


Ribonucleic acid


Tobacco mosaic virus


Turnip yellow mosaic virus




Viral nanoparticles


Virus-like particle


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agard NJ, Baskin JM, Prescher JA, Lo A, Bertozzi CR (2006) A comparative study of bioortho-gonal reactions with azides. ACS Chem Biol 1:644–648PubMedCrossRefGoogle Scholar
  2. Amini F, Denison C, Lin H-J, Kuo L, Kodadek T (2003) Using oxidative crosslinking and proximity labeling to quantitatively characterize protein-protein and protein-peptide complexes. Chem Biol 10:1115–1127PubMedCrossRefGoogle Scholar
  3. Antos JM, Francis MB (2004) Selective tryptophan modification with rhodium carbenoids in aqueous solution. J Am Chem Soc 126:10256PubMedCrossRefGoogle Scholar
  4. Antos JM, Francis MB (2006) Transition metal catalyzed methods for site-selective protein modification. Curr Opin Chem Biol 10:253–262PubMedCrossRefGoogle Scholar
  5. Ashcroft AE, Lago H, Macedo JM et al. (2005) Engineering thermal stability in RNA phage capsids via disulphide bonds. J Nanosci Nanotech 5:2034–20418CrossRefGoogle Scholar
  6. Barnhill H, Reuther R, Ferguson PL, Dreher TW, Wang Q (2007) Turnip yellow mosaic virus as a chemoaddressable bionanoparticle. Bioconj Chem 18:852–859CrossRefGoogle Scholar
  7. Blum AS et al. (2004) Cowpea mosaic virus as a scaffold for 3-D patterning of gold nanoparticles. Nano Lett 4:867–870CrossRefGoogle Scholar
  8. Blum AS et al. (2005) An engineered virus as a scaffold for three-dimensional self-assembly on the nanoscale. Small 1:702–706PubMedCrossRefGoogle Scholar
  9. Blum AS et al. (2006) Templated self-assembly of quantum dots from aqueous solution using protein scaffolds. Nanotechnology 17:5073–5079CrossRefGoogle Scholar
  10. Bothner B, Schneemann A, Marshall D et al. (1999) Crystallographically identical virus capsids display different properties in solution. Nat Struct Biol 6:114–116PubMedCrossRefGoogle Scholar
  11. Bothner B, Taylor D, Jun B et al. (2005) Maturation of a tetravirus capsid alters the dynamic properties and creates a metastable complex. Virology 334:17–27PubMedCrossRefGoogle Scholar
  12. Broo K, Wei J, Marshall D et al. (2001) Viral capsid mobility: a dynamic conduit for inactivation. Proc Nat Acad Sci U S A 98:2274–2277CrossRefGoogle Scholar
  13. Brown KC, Kodadek T (2001) Protein cross-linking mediated by metal ion complexes. Metal Ions Biol Sys 38:351–384Google Scholar
  14. Bruening GE, Agrawal HO (1967) Infectivity of a mixture of cowpea mosaic virus ribonucleopro-tein components. Virology 32:306–320PubMedCrossRefGoogle Scholar
  15. Canady MA, Larson SB, Day J, McPherson A (1996) Crystal structure of turnip yellow mosaic virus. Nat Struct Biol 3:771–781PubMedCrossRefGoogle Scholar
  16. Chan TR, Hilgraf R, Sharpless KB, Folkin VV (2004) Polytriazoles as copper(I)-stabilizing lig-ands in catalysis. Org Lett 6:2853PubMedCrossRefGoogle Scholar
  17. Chatterji A, Ochoa WF, Paine F et al. (2004a) New addresses on an addressable virus nanoblock uniquely reactive lys residues on cowpea mosaic virus. Chem Biol 11:855–863CrossRefGoogle Scholar
  18. Chatterji A, Ochoa W, Shamieh L et al. (2004b) Chemical conjugation of heterologous proteins on the surface of cowpea mosaic virus. Bioconj Chem 15:807–813CrossRefGoogle Scholar
  19. Chatterji A, Ochoa WF, Ueno T, Lin T, Johnson JE (2005) A virus-based nanoblock with tunable electrostatic properties. Nano Lett 5:597–602PubMedCrossRefGoogle Scholar
  20. Cheung CL, Camarero JA, Woods BW et al. (2003) Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. J Am Chem Soc 125:6848–6849PubMedCrossRefGoogle Scholar
  21. Cheung CL, Chung SW, Chatterji A et al. (2006) Physical controls on directed virus assembly at nanoscale chemical templates. J Am Chem Soc 128:10801–10807PubMedCrossRefGoogle Scholar
  22. Chillon M, Lee JH, Fasbender A, Welsh MJ (1998) Adenovirus complexed with polyethylene glycol and cationic lipid is shielded from neutralizing antibodies in vitro. Gene Ther 5:995–1002PubMedCrossRefGoogle Scholar
  23. Crick FHC, Watson JD (1956) Structure of small viruses. Nature 177:473–475PubMedCrossRefGoogle Scholar
  24. Dalsgaard K, Uttenthal A, Jones TD et al. (1997) Plant-derived vaccine protects target animals against a viral disease. Nat Biotech 15:248–252CrossRefGoogle Scholar
  25. Dessens JT, Lomonossoff GP (1993) Cauliflower mosaic 35S promoter-controlled DNA copies of cowpea mosaic virus RNAs are infectious on plants. J Gen Virol 74:889–892PubMedCrossRefGoogle Scholar
  26. Douglas T (2003) Materials science. A bright bio-inspired future. Science 299:1192–1193PubMedCrossRefGoogle Scholar
  27. Douglas T, Young M (1998) Host-guest encapsulation of materials by assembled virus protein cages. Nature 393:152–155CrossRefGoogle Scholar
  28. Douglas T, Young M (1999) Virus particles as templates for materials synthesis. Adv Mater 11:679–681CrossRefGoogle Scholar
  29. Douglas T, Young M (2006) Viruses: making friends with old foes. Science 312:873–875PubMedCrossRefGoogle Scholar
  30. Douglas T, Dickson DPE, Betteridge S et al. (1995) Synthesis and structure of an iron(III) sulfide-ferritin bioinorganic nanocomposite. Science 269:54–57PubMedCrossRefGoogle Scholar
  31. Douglas T, Strable E, Willits D et al. (2002) Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv Mater 14:415–418CrossRefGoogle Scholar
  32. Falkner JC, Turner ME, Bosworth JK et al. (2005) Virus crystals as nanocomposite scaffolds. J Am Chem Soc 127:5274–5275PubMedCrossRefGoogle Scholar
  33. Flenniken ML, Willits DA, Brumfield S, Young MJ, Douglas T (2003) The small heat shock protein cage from Methanococcus jannaschii is a versatile nanoscale platform for genetic and chemical modification. Nano Lett 3:1573–1576CrossRefGoogle Scholar
  34. Flenniken ML, Willits DA, Harmsen AL et al. (2006) Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture. Chem Biol 13:161–170PubMedCrossRefGoogle Scholar
  35. Gillitzer E, Willits D, Young M, Douglas T (2002) Chemical modification of a viral cage for multivalent presentation. Chem Commun 2390–2391Google Scholar
  36. Gillitzer E, Suci PA, Young Mark J, Douglas ES (2006) Controlled ligand display on a symmetrical protein-cage architecture through mixed assembly. Small 2:962–966PubMedCrossRefGoogle Scholar
  37. Golmohammadi R, Valegard K, Fridborg K, Liljas L (1993) The redefined structure of bacteri-ophage MS2 at 2.8A resolution. J Mol Biol 234:620–639PubMedCrossRefGoogle Scholar
  38. Golmohammadi R, Fridborg K, Bundule M, Liljas L (1996) The crystal structure of bacteriophage Q beta at 3.5A resolution. Structure 4:543–554PubMedCrossRefGoogle Scholar
  39. Granier T, Gallois B, Dautant A, Estaintot BLD, Precigoux G (1997) Comparison of the structures of the cubic and tetragonal forms of horse-spleen apoferritin. Acta Cryst D 53:580–587CrossRefGoogle Scholar
  40. Hermanson GT (1991) Bioconjugate techniques. Academic Press, San DiegoGoogle Scholar
  41. Hooker JM, Kovacs EW, Francis MB (2004) Interior surface modification of bacteriophage MS2. J Am Chem Soc 126:3718–3719PubMedCrossRefGoogle Scholar
  42. Juhl SB, Chan EP, Ha YH et al. (2006) Assembly of Wiseana iridovirus: viruses for colloidal photonic crystals. Adv Func Mater 16:1086–1094CrossRefGoogle Scholar
  43. Kiick KL, Tirrell DA (2000) Protein engineering by in vivo incorporation of non-natural amino acids: control of incorporation of methioonine analogues by methionyl tRNA synthetase. Tetrahedron 56:9487–9493CrossRefGoogle Scholar
  44. Kiick KL, Van Hest JCM, Tirrell DA (2000) Expanding the scope of protein biosynthesis by altering the methionyl-tRNA synthetase activity of a bacterial expression host. Angew Chem Int Ed Engl 39:2148–2152PubMedCrossRefGoogle Scholar
  45. Kiick KL, Weberskirch R, Tirrell DA (2001) Identification of an expanded set of translationally active methionine analogues in Escherichia coli. FEBS Lett 502:25–30PubMedCrossRefGoogle Scholar
  46. Kiick KL, Saxon E, Tirrell DA, Bertozzi CR (2002) Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc Natl Acad Sci U S A 99:19–24PubMedCrossRefGoogle Scholar
  47. Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat-shock protein. Nature 394:595–599PubMedCrossRefGoogle Scholar
  48. Klem MT, Young M, Douglas T (2005a) Biomimetic magnetic nanoparticle. Mater Today 8:28–37CrossRefGoogle Scholar
  49. Klem MT, Willits D, Solis DJ et al. (2005b) Bio-inspired synthesis of protein-encapsulated CoPt nanoparticles. Adv Func Mater 15:1489–1494CrossRefGoogle Scholar
  50. Kuhn RJ, Zhang W, Rossman MG et al. (2002) Structure of dengue virus: implications for flavivi-rus organization, maturation, and fusion. Cell 108:717–725PubMedCrossRefGoogle Scholar
  51. Lewis WG, Magallon FG, Fokin V V, Finn MG (2004) Discovery and characterization of catalysts for azide-alkyne cycloaddition by fluorescence quenching. J Am Chem Soc 126:9152–9153PubMedCrossRefGoogle Scholar
  52. Liepold LO, Revis J, Allen M et al. (2005) Structural transitions in cowpea chlorotic mottle virus (CCMV). Phys Biol 2:S166–S172PubMedCrossRefGoogle Scholar
  53. Lin T, Johnson JE (2003) Structure of picorna-like plant viruses: implications and applications. Adv Virus Res 62:167–239PubMedCrossRefGoogle Scholar
  54. Lin T, Porta C, Lomonossoff G, Johnson JE (1996) Structure-based design of peptide presentation on a viral surface: the crystal structure of a plant/animal virus chimera at 2.8.ANG resolution. Fold Des 1:179–187PubMedCrossRefGoogle Scholar
  55. Lin T, Chen Z, Usha R et al. (1999) The refined crystal structure of cowpea mosaic virus at 2.8 Å resolution. Virology 265:20–34PubMedCrossRefGoogle Scholar
  56. Lin Y, Böker A, He J et al. (2005) Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434:55–59PubMedCrossRefGoogle Scholar
  57. Liu L, Lomonossoff GP (2002) Agroinfection as a rapid method for propagating Cowpea mosaic virus-based constructs. J Virol Methods 105:343–348PubMedCrossRefGoogle Scholar
  58. Liu L, Cañizares MC, Monger W et al. (2005) Cowpea mosaic virus-based systems for the production of antigens and antibodies in plants. Vaccine 23:1788–1792PubMedCrossRefGoogle Scholar
  59. Lomonossoff GP (1996) Modified plant viruses as vectors of heterologous peptides and use as animal vaccines. In: PCT Int. Appl. Axis Genetics Ltd., UKGoogle Scholar
  60. Lomonossoff GP, Hamilton WDO (1999) Cowpea mosaic virus-based vaccines. Curr Topics Microbiol Immun 240:177–189Google Scholar
  61. Lomonossoff GP, Johnson JE (1991) The synthesis and structure of comovirus capsids. Prog Biophys Mol Biol 55:107–137PubMedCrossRefGoogle Scholar
  62. Lomonossoff GP, Shanks M (1983) The nucleotide sequence of cowpea mosaic virus B RNA. EMBO J 2:2253–2258PubMedGoogle Scholar
  63. Mahal LK, Yarema KJ, Bertozzi CR (1997) Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276:1125–1128PubMedCrossRefGoogle Scholar
  64. Marlow SA, Delgado C, Neale D, Francis GE (1999) ViraMASC: a biologically optimized pegyla-tion technology to target adenovirus to tumors. Proc Int Symp Controlled Release Bioact Mater 26:555–556Google Scholar
  65. Martin CS et al. (2001) Combined EM/X-ray imagining yields a quasi-atomic model of the adeno-virus-related bacteriophage PRD1 and shows key capsid and membrane interactions. Structure 9:917–930PubMedCrossRefGoogle Scholar
  66. McFarland JM, Francis MB (2005) Reductive alkylation of proteins using iridium catalyzed transfer hydrogenation. J Am Chem Soc 127:13490–13491PubMedCrossRefGoogle Scholar
  67. Medintz IL, Sapsford KE, Konnert JH et al. (2005) Decoration of discretely immobilized cowpea mosaic virus with luminescent quantum dots. Langmuir 21:5501–5510PubMedCrossRefGoogle Scholar
  68. Meldrum FC, Wade VJ, Nimmo DL, Heywood BR, Mann S (1991) Synthesis of inorganic nano-phase materials in supramolecular protein cages. Nature 349:684–687CrossRefGoogle Scholar
  69. Meunier S, Strable E, Finn MG (2004) Crosslinking of and coupling to viral capsid proteins by tyrosine oxidation. Chem Biol 11:319–326PubMedCrossRefGoogle Scholar
  70. Miller RA, Preseley AD, Francis MB (2007) Self-assembling light harvesting systems from synthetically modified tobacco mosaic virus. J Am Chem Soc 129:3104–3109PubMedCrossRefGoogle Scholar
  71. Munshi S, Liljas L, Johnson JE (1998) Structure determination of Nudaurelia capensis omega virus. Acta Cryst D 54:1295–1305CrossRefGoogle Scholar
  72. Nakagawa A, Miyazaki N, Taka J et al. (2003) The atomic structure of rice dwarf virus reveals the self-assembly mechanism of component proteins. Structure 11:1227–1238PubMedCrossRefGoogle Scholar
  73. Namba K, Caspar DLD, Stubbs G (1985) Computer graphics representation of levels of organization in tobacco mosaic virus structure. Science 227:773–776PubMedCrossRefGoogle Scholar
  74. Niu Z, Bruckman M, Kotakadi VS et al. (2006) Study and characterization of tobacco mosaic virus head-to-tail assembly assisted by aniline polymerization. Chem Commun (Camb) 3019–3021Google Scholar
  75. Ochoa WF, Chatterji A, Lin T, Johnson JE (2006) Generation and structural analysis of reactive empty particles derived from an icosahedral virus. Chem Biol 13:771–778PubMedCrossRefGoogle Scholar
  76. O'Riordan CR, Lachapelle A, Delgado C et al. (1999) PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther 10:1349–1358PubMedCrossRefGoogle Scholar
  77. Paillard F (1999) Dressing up adenoviruses to modify their tropism. Hum Gene Ther 10:2575–2576CrossRefGoogle Scholar
  78. Porta C, Lomonossoff GP (1998) Scope for using plant viruses to present epitopes from animal pathogens. Rev Med Virol 8:25–41PubMedCrossRefGoogle Scholar
  79. Porta C, Spall VE, Loveland J et al. (1994) Development of cowpea mosaic virus as a high-yielding system for the presentation of foreign peptides. Virology 202:949–955PubMedCrossRefGoogle Scholar
  80. Portney NG, Singh K, Chaudhary S et al. (2005) Organic and inorganic nanoparticle hybrids. Langmuir 21:2098–2103PubMedCrossRefGoogle Scholar
  81. Prasad B V, Hardy ME, Dokland T et al. (1999) X-ray crystallographic structure of the Norwalk virus capsid. Science 286:287–290PubMedCrossRefGoogle Scholar
  82. Prasuhn J, DE, Yeh RM, Obenaus A, Manchester M, Finn MG (2007) Viral MRI contrast agents: coordination of Gd by native virions and attachment of Gd complexes by azide-alkyne cycloaddition. Chem Commun 1269–1271Google Scholar
  83. Prescher JA, Bertozzi CR (2005) Chemistry in living systems. Nat Chem Biol 1:13–21PubMedCrossRefGoogle Scholar
  84. Radloff C, Vaia RA, Brunton J, Bouwer GT, Ward VK (2005) Metal nanoshell assembly on a virus bioscaffold. Nano Lett 5:1187–1191PubMedCrossRefGoogle Scholar
  85. Raja KS, Wang Q, Finn MG (2003a) Icosahedral virus particles as polyvalent carbohydrate display platforms. ChemBioChem 4:1348–1351CrossRefGoogle Scholar
  86. Raja KS, Wang Q, Gonzalez MJ et al. (2003b) Hybrid virus-polymer materials. 1. Synthesis and properties of peg-decorated cowpea mosaic virus. Biomacromolecules 4:472–476CrossRefGoogle Scholar
  87. Russell JT, Lin Y, Böker A et al. (2005) Self-assembly and cross-linking of bionanoparticles at liquid-liquid interfaces. Angew Chem Int Ed 44:2420–2426CrossRefGoogle Scholar
  88. Sapsford KE, Soto CM, Blum AS et al. (2006) A cowpea mosaic virus nanoscaffold for multiplexed antibody conjugation: application as an immunoassay tracer. Biosens Bioelectron 21:1668–1673PubMedCrossRefGoogle Scholar
  89. Saxon E, Bertozzi Carolyn R (2000) Cell surface engineering by a modified Staudinger reaction. Science 287:2007–2010PubMedCrossRefGoogle Scholar
  90. Saxon E, Luchansky SJ, Hang SC et al. (2002) Investigating cellular metabolism of synthetic azidosugars with the Staudinger Ligation. J Am Chem Soc 124:14893PubMedCrossRefGoogle Scholar
  91. Schlick TL, Ding Z, Kovacs EW, Francis MB (2005) Dual-surface modification of the tobacco mosaic virus. J Am Chem Soc 127:3718–3723PubMedCrossRefGoogle Scholar
  92. Sen Gupta S, Kuzelka J, Singh P et al. (2005a) Accelerated bioorthogonal conjugation: a practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold. Bioconj Chem 16:1572–1579CrossRefGoogle Scholar
  93. Sen Gupta S, Raja KS, Kaltgrad E, Strable E, Finn MG (2005b) Virus-glycopolymer conjugates by copper(I) catalysis of atom transfer radical polymerization and azide-alkyne cycloaddition. Chem Commun 4315–4317Google Scholar
  94. Shanks M, Lomonossoff GP (2000) Co-expression of the capsid proteins of cowpea mosaic virus in insect cells leads to the formation of virus-like particles. J Gen Virol 81:3093–3097PubMedGoogle Scholar
  95. Shepherd CM, Borelli IA, Lander G et al. (2006) VIPERdb: a relational database for structural virology. Nucleic Acids Res 34:D386–D389PubMedCrossRefGoogle Scholar
  96. Smith JC et al. (2003) Nanopatterning the chemospecific immobilization of cowpea mosaic virus capsid. Nano Lett 3:883–886CrossRefGoogle Scholar
  97. Soto CM et al. (2004) Separation and recovery of intact gold-virus complex by agarose electrophoresis and electroelution: application to the purification of cowpea mosaic virus and colloidal gold complex. Electrophoresis 25:2901–2906PubMedCrossRefGoogle Scholar
  98. Soto CM, Blum AS, Vora GJ et al. (2006) Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. J Am Chem Soc 128:5184–5189PubMedCrossRefGoogle Scholar
  99. Speir JA, Munshi S, Wang G, Baker TS, Johnson JE (1995) Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3:63–78PubMedCrossRefGoogle Scholar
  100. Stauffacher CV et al. (1987) The structure of cowpea mosaic virus at 3.5 Ang. resolution. In: Moras J, Drenth J, Strandberg B, Suck D, Wilson K (eds) Crystallography in molecular biology. Plenum, New York, pp 293–308Google Scholar
  101. Steinmetz NF, Lomonossoff GP, Evans DJ (2005) Decoration of cowpea mosaic virus with multiple redox active organometallic complexes. Small 2:530–533CrossRefGoogle Scholar
  102. Steinmetz NF, Calder G, Lomonossoff G, Evans DJ (2006) Plant viral capsids as nanobuilding blocks: construction of arrays on solid supports. Langmuir 22:10032–10037PubMedCrossRefGoogle Scholar
  103. Steinmetz NF, Lomonossoff GP, Evans DJ (2006) Cowpea mosaic virus for material fabrication: addressable carboxylate groups on a programmable nanoscaffold. Langmuir 22:3488–3490PubMedCrossRefGoogle Scholar
  104. Steinmetz NF, Evans DJ, Lomonossoff GP (2007) Chemical introduction of reactive thiols into a viral nanoscaffold: a method which avoids virus aggregation. ChemBioChem 8:1131–1136PubMedCrossRefGoogle Scholar
  105. Steinmetz NF, Evans DJ, Lomonossoff GP (2007) Monitoring aggregation of chemically and genetically engineered thiol-decorated viral nanoparticles. ChemBioChem, in pressGoogle Scholar
  106. Strable E, Johnson JE, Finn MG (2004) Natural nanochemical building blocks: icosahedral virus particles organized by attached oligonucleotides. Nano Lett 4:1385–1389CrossRefGoogle Scholar
  107. Suci PA, Klem MT, Arce FT, Douglas T, Young M (2006) Assembly of multilayer films incorpo rating a viral protein cage architecture. Langmuir 22:8891–8896PubMedCrossRefGoogle Scholar
  108. Taylor DJ, Krishna NK, Canady MA, Schneemann A, Johnson JE (2002) Large-scale, pH-dependent, quaternary structure changes in an RNA virus capsid are reversible in the absence of subunit autoproteolysis. J Virol 76:9972–9980PubMedCrossRefGoogle Scholar
  109. Taylor DJ, Wang Q, Bothners B et al. (2003) Correlation of chemical reactivity of Nudaurelia capensis omega virus with a pH-induced conformational change. Chem Commun 2770–2771Google Scholar
  110. Tilley SD, Francis MB (2006) Tyrosine-selective protein alkylation using p-allylpalladium complexes. J Am Chem Soc 128:1080–1081PubMedCrossRefGoogle Scholar
  111. Tseng RJ, Tsai C, Ma L et al. (2006) Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nat Nanotech 1:72–77CrossRefGoogle Scholar
  112. Usha R, Rholl JB, Spall VE et al. (1993) Expression of an animal virus antigenic site on the surface of a plant virus particle. Virology 197:366–374PubMedCrossRefGoogle Scholar
  113. van Swieten PF, Leeuwenburgh MA, Kessler BM, Overkleeft HS (2005) Bioorthogonal organic chemistry in living cells: novel strategies for labeling biomolecules. Org Biomol Chem 3:20–27PubMedCrossRefGoogle Scholar
  114. Virudachalam R, Harrington MM (1985) Thermal stability of cowpea mosaic virus components: differential scanning calorimetry studies. Virology 146:138–140PubMedCrossRefGoogle Scholar
  115. Wang Q, Kaltgrad E, Lin T, Johnson JE, Finn MG (2002a) Natural supramolecular building blocks: wild-type cowpea mosaic virus. Chem Biol 9:805–811CrossRefGoogle Scholar
  116. Wang Q, Lin T, Tang L, Johnson JE, Finn MG (2002b) Icosahedral virus particles as addressable nanoscale building blocks. Angew Chem Int Ed 41:459–462CrossRefGoogle Scholar
  117. Wang Q, Lin T, Johnson JE, Finn MG (2002c) Natural supramolecular building blocks cysteine-added mutants of cowpea mosaic virus. Chem Biol 9:813–819CrossRefGoogle Scholar
  118. Wang Q, Chan TR, Hilgraf R et al. (2003) Bioconjugation by copper(I)-catalyzed azide-alkyne [3+2] cycloaddition. J Am Chem Soc 125:3192–3193PubMedCrossRefGoogle Scholar
  119. Wikoff WR, Duda RL, Hendrix RW, Johnson JE (1999) Crystallographic analysis of the dsDNA bacteriophage HK97 mature empty capsid. Acta Crystallogr D: Biol Crystallogr D55:763–771CrossRefGoogle Scholar
  120. Wong SS (1991) Chemistry of protein conjugation and cross-linking. CRC Press, Boca Raton, FLGoogle Scholar
  121. Wynne SA, Crowther RA, Leslie AG (1999) The crystal structure of the human hepatitis B virus capsid. Mol Cell 3:771–780PubMedCrossRefGoogle Scholar
  122. Zabel P, Moerman M, Lomonossoff G, Shanks M, Beyreuther K (1984) Cowpea mosaic virus VPg: sequencing of radiochemically modified protein allows mapping of the gene on B RNA. EMBO J 3:1629–1634PubMedGoogle Scholar
  123. Zalipsky S (1995) Chemistry of polyethylene-glycol conjugates with biologically active molecules. Adv Drug Del Rev 16:157–182CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Dynavax Technologies Corp.BerkeleyUSA
  2. 2.CB248, The Scripps Research InstituteLa JollaUSA

Personalised recommendations