Advertisement

Genomic Insights into Cold Adaptation of Permafrost Bacteria

  • Corien BakermansEmail author
  • Peter W. Bergholz
  • Hector Ayala-del-Río
  • James Tiedje
Part of the Soil Biology book series (SOILBIOL, volume 16)

Genomic analysis of the permafrost isolate Psychrobacter arcticus 273-4 has revealed that a variety of adaptations are employed to enable active growth at subzero temperatures. Many of these low-temperature adaptations are largely similar to adaptations found in other psychrophilic microorganisms isolated from other low-temperature environments and include: changes in amino acid abundance that favor protein mobility; RNA and protein chaperones; and desaturation of membrane lipids. Unlike other psychrophiles, P. arcticus 273-4 constitutively expressed the major cold shock protein (cspA, an RNA chaperone); employed several pairs of isozymes (homologous enzymes with different temperature optima); regulated cell wall elasticity as temperatures decreased; and utilized resources efficiently. These unique low-temperature adaptations may be advantageous in permafrost, where subzero temperatures reign.

Keywords

Cold Adaptation Subzero Temperature Psychrophilic Bacterium Siberian Permafrost Genomic Insight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auman AJ, Breezee JL, Gosink JJ, Kampfer P, Staley JT (2006) Psychromonas ingrahamii sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice. Int J Syst Evol Microbiol 56:1001–1007PubMedCrossRefGoogle Scholar
  2. Bakermans C, Nealson KH (2004) Relationship of critical temperature to macromolecular synthesis and growth yield in “Psychrobacter cryopegella.” J Bacteriol 186:2340–2345PubMedCrossRefGoogle Scholar
  3. Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at −10°C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326PubMedCrossRefGoogle Scholar
  4. Bakermans C, Ayala-del-Río HL, Ponder MA, Vishnivetskaya T, Gilichinsky D, Thomashow MF, Tiedje JM (2006) Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov. isolated from Siberian permafrost. Int J Syst Evol Microbiol 56:1285–1291PubMedCrossRefGoogle Scholar
  5. Bakermans C, Tollaksen SL, Giometti CS, Wilkerson C, Tiedje JM, Thomashow MF (2007) Proteomic analysis of Psychrobacter cryohalolentis K5 during growth at subzero temperatures. Extremophiles 11: 345–354CrossRefGoogle Scholar
  6. Bayles D, Tunick M, Foglia T, Miller A (2000) Cold shock and its effect on ribosomes and thermal tolerance in Listeria monocytogenes. Appl Environ Microbiol 66:4351–4355PubMedCrossRefGoogle Scholar
  7. Beckering CL, Steil L, Weber MHW, Volker U, Marahiel MA (2002) Genomewide transcriptional analysis of the cold-shock response in Bacillus subtilis. J Bacteriol 184:6395–6402PubMedCrossRefGoogle Scholar
  8. Bock C, Eicken H (2005) A magnetic resonance study of temperature-dependent microstructural evolution and self-diffusion of water in Arctic first-year sea ice. Ann Glaciol 40:179–184CrossRefGoogle Scholar
  9. Bowman J, Nichols D, McMeekin T (1997) Psychrobacter glacincola sp. nov, a halotolerant, psychrophilic bacterium isolated from Antarctic sea ice. Syst Appl Microbiol 20:209–215Google Scholar
  10. Budde I, Steil L, Scharf C, Volker U, Bremer E (2006) Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal. Microbiology-SGM 152:831–853CrossRefGoogle Scholar
  11. Chamot D, Owttrim GW (2000) Regulation of cold-shock-induced RNA helicase gene expression in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 182:1251–1256PubMedCrossRefGoogle Scholar
  12. Feller G (2007) Life at low temperatures: is disorder the driving force? Extremophiles 6:211–216CrossRefGoogle Scholar
  13. Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S, Gerday C. (1996) Enzymes from psychrophilic organisms. FEMS Microbiol Rev 18:189–202CrossRefGoogle Scholar
  14. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM et al (1995) The minimal gene complement of Mycoplasma genitalium. Science 270:397–403PubMedCrossRefGoogle Scholar
  15. Gao HC, Yang ZMK, Wu LY, Thompson DK, Zhou JZ (2006) Global transcriptome analysis of the cold-shock response of Shewanella oneidensis MR-1 and mutational analysis of its classical cold-shock proteins. J Bacteriol 188:4560–4569PubMedCrossRefGoogle Scholar
  16. Gilichinsky D, Vorobyova EA, Erokhina LG, Fedorov-Davydov DG, Chaikovskaya NR (1992) Long-term preservation of microbial ecosystems in permafrost. Adv Space Res 12:255–263PubMedCrossRefGoogle Scholar
  17. Gilichinsky D, Rivkina E, Shcherbakova V, Laurinavichuis K, Tiedje J (2003) Supercooled water brines within permafrost — an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3:331–341PubMedCrossRefGoogle Scholar
  18. Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, Ivanushkina N, Kochkina G, Laurinavichuis K, Pecheritsina S. et al (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53:117–128PubMedCrossRefGoogle Scholar
  19. Goldenberg D, Azar I, Oppenheim AB, Brandi A, Pon CL, Gualerzi CO (1997) Role of Escherichia coli cspA promoter sequences and adaptation of translational apparatus in the cold-shock response. Mol Gen Genet 256:282–290PubMedCrossRefGoogle Scholar
  20. Goodchild A, Saunders NFW, Ertan H, Raftery M, Guilhaus M, Curmi PMG, Cavicchioli R (2004) A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol Microbiol 53:309–321PubMedCrossRefGoogle Scholar
  21. Gosink J, Woese C, Staley J (1998) Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of ‘Flectobacillus glomeratus’ as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 48:223–235PubMedCrossRefGoogle Scholar
  22. He HJ, Gordon R, Gow JA (2001) The effect of temperature on the fatty acids and isozymes of a psychrotrophic and two mesophilic species of Xenorhabdus, a bacterial symbiont of entomopathogenic nematodes. Can J Microbiol 47:382–391PubMedCrossRefGoogle Scholar
  23. Iost I, Dreyfus M (2006) DEAD-box RNA helicases in Escherichia coli. Nucl Acids Res 34:4189–4197PubMedCrossRefGoogle Scholar
  24. Ishii A, Ochiai T, Imagawa S, Fukunaga N, Sasaki S, Minowa O, Mizuno Y, Shiokawa H (1987) Isozymes of isocitrate dehydrogenase from an obligately psychrophilic bacterium, Vibrio sp strain Abe-1 — purification, and modulation of activities by growth-conditions. J Biochem 102:1489–1498PubMedGoogle Scholar
  25. Jiang W, Hou Y, Inouye M (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 272:196–202PubMedCrossRefGoogle Scholar
  26. Johnson S, Hebsgaard M, Christensen T, Mastepanov M, Nielsen R, Munch K, Brand T, Gilbert M, Zuber M, Bunce M et al (2007) Ancient bacteria show evidence of DNA repair. Proc Natl Acad Sci USA 104:14401–14405PubMedCrossRefGoogle Scholar
  27. Lim J, Thomas T, Cavicchioli R (2000) Low temperature regulated DEAD-box RNA helicase from the antarctic archaeon, Methanococcoides burtonii1. J Mol Biol 297:553–567PubMedCrossRefGoogle Scholar
  28. Maruyama A, Honda D, Yamamoto K, Kitamura K, Higashihara T (2000) Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deepsea species Psychrobacter pacificensis sp. nov. Int J Syst Evol Microbiol 50:835–846PubMedGoogle Scholar
  29. Medigue C, Krin E, Pascal G, Barbe V, Bernsei A, Bertin PN, Cheung F, Cruveiller S, D’Amico S, Duilio A et al (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335PubMedCrossRefGoogle Scholar
  30. Methe BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ et al (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918PubMedCrossRefGoogle Scholar
  31. Ochiai T, Fukunaga N, Sasaki S (1979) Purification and some properties of two NADP + -specific isocitrate dehydrogenases from an obligately psychrophilic marine bacterium, Vibrio sp. strain Abe-1. J Biochem 86:377–384PubMedGoogle Scholar
  32. Ochiai T, Fukunaga N, Sasaki S (1984) Two structurally different NADP-specific isocitrate dehydrogenases in an obligately psychrophilic bacterium, Vibrio sp strain Abe-1. J Gen Appl Microbiol 30:479–487CrossRefGoogle Scholar
  33. Phadtare S, Inouye M (2004) Genome-wide transcriptional analysis of the cold-shock response in wild-type and cold-sensitive, quadruple-csp-deletion strains of Escherichia coli. J Bacteriol 186:7007–7014PubMedCrossRefGoogle Scholar
  34. Phadtare S, Inouye M, Severinov K (2002) The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells. J Biol Chem 277:7239–7245PubMedCrossRefGoogle Scholar
  35. Ponder MA, Gilmour SJ, Bergholz PW, Mindock CA, Hollingsworth R, Thomashow MF, Tiedje JM (2005) Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiol Ecol 53:103–115PubMedCrossRefGoogle Scholar
  36. Rabus R, Ruepp A, Frickey T, Rattei T, Fartmann B, Stark M, Bauer M, Zibat A, Lombardot T, Becker I et al (2004) The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol 6:887–902PubMedCrossRefGoogle Scholar
  37. Read TD, Brunham RC, Shen C, Gill SR, Heidelberg JF, White O, Hickey EK, Peterson J, Utterback T, Berry K et al (2000) Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucl Acids Res 28:1397–1406PubMedCrossRefGoogle Scholar
  38. Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233PubMedCrossRefGoogle Scholar
  39. Rodrigues D (2007) Ecology, physiology and metabolism of cold-adapted microorganisms from the Siberian permafrost. PhD Thesis, Michigan State University, East Lansing, USAGoogle Scholar
  40. Romanenko LA, Schumann P, Rohde M, Lysenko AM, Mikhailov VV, Stakebrandt E (2002) Psychrobacter submarinus sp. nov. and Psychrobacter marincola sp. nov., psychrophilic halophiles from marine environments. Int J Syst Evol Microbiol 52:1291–1297PubMedCrossRefGoogle Scholar
  41. Russell NJ (1990) Cold adaptation of microorganisms. Proc Natl Acad Sci USA 326:595–608Google Scholar
  42. Russell NJ (1997) Psychrophilic bacteria — Molecular adaptations of membrane lipids. Comp Biochem Physiol Part A: Physiol 118:489–493CrossRefGoogle Scholar
  43. Russell NJ (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4:83–90PubMedCrossRefGoogle Scholar
  44. Saunders NFW, Thomas T, Curmi PMG, Mattick JS, Kuczek E, Slade R, Davis J, Franzmann PD, Boone D, Rusterholtz K et al (2003) Mechanisms of thermal adaptation revealed from the genomes of the Antarctic archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res 13:1580–1588PubMedCrossRefGoogle Scholar
  45. Sher AV, Virina EI, Zazhigin VS (1977) Stratigraphy, paleomagnetism, and fauna of mammals of Pliocene-Upper Quanternary beds in Kolyma lower reaches. Doklady Akademii Nauk Sssr 234:1171–1174Google Scholar
  46. Shi T, Reeves RH, Gilichinsky DA, Friedmann EI (1997) Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microb Ecol 33:169–179PubMedCrossRefGoogle Scholar
  47. Singer GAC, Hickey DA (2003) Thermophilic prokaryotes have characteristic patterns of codon usage, amino acid composition and nucleotide content. Gene 317:39–47PubMedCrossRefGoogle Scholar
  48. Strocchi M, Ferrer M, Timmis KN, Golyshin PN (2006) Low temperature-induced systems failure in Escherichia coli: insights from rescue by cold-adapted chaperones. Proteomics 6:193–206PubMedCrossRefGoogle Scholar
  49. Vishnivetskaya T, Kathariou S, McGrath J, Gilichinsky D, Tiedje JM (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4:165–173PubMedCrossRefGoogle Scholar
  50. Whyte LG, Inniss WE (1992) Cold-shock proteins and cold-acclimation proteins in a psychrotrophic bacterium. Can J Microbiol 38:1281–1285CrossRefGoogle Scholar
  51. Yao X, Jericho M, Pink D, Beveridge T (1999) Thickness and elasticity of Gram-negative murein sacculi measured by atomic force microscopy. J Bacteriol 181:6865–6875PubMedGoogle Scholar
  52. Yumoto I, Hirota K, Sogabe Y, Nodasaka Y, Yokota Y, Hoshino T (2003) Psychrobacter okhotskensis sp. nov., a lipase-producing facultative psychrophile isolated from the coast of the Okhotsk Sea. Int J Syst Evol Microbiol 53:1985–19899PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Corien Bakermans
    • 1
    Email author
  • Peter W. Bergholz
    • 2
  • Hector Ayala-del-Río
    • 3
  • James Tiedje
    • 4
  1. 1.Department of Earth SciencesMontana State UniversityBozemanUSA
  2. 2.Department of Crop and Soil SciencesCornell UniversityIthacaUSA
  3. 3.Department of BiologyUniversity of Puerto Rico at HumacaoHumacaoUSA
  4. 4.Center for Microbial EcologyMichigan State UniversityEast LansingUSA

Personalised recommendations