Fluid Dynamics in Bioreactor Design: Considerations for the Theoretical and Practical Approach

  • B. Weyand
  • M. Israelowitz
  • H. P. von Schroeder
  • P. M. Vogt
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 112)

The following chapter summarizes principles of fluid dynamics in bioreactor design with a focus on mammalian cell-culture systems.

Keywords

Bioreactor Computational fluid dynamics Flow pattern Fluid dynamics Laminar flow Shear stress Perfusion system Pulsatile flow Rotating vessel Stirring system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferzinger JH, Peri M (2002) Computational methods for fluid dynamics, 3rd edn. SpringerVerlag, Berlin Heidelberg New YorkGoogle Scholar
  2. 2.
    Vo n Böckh P (2004) Fluidmechanik. 2. Auflage, SpringerQQQQVerlag, Berlin Heidelberg New YorkGoogle Scholar
  3. 3.
    Gersten K (1991) Einführung in die Strömungsmechanik, 6. öberarbeitete Auflage. Herausgeber Th. Lehmann, Verlag Vieweg, Braunschweig, WiesbadenGoogle Scholar
  4. 4.
    Nagata S (1975) MixingQQQQprinciples and applications. WileyQQQQVerlag, New YorkGoogle Scholar
  5. 5.
    Svensson FJE (2005) Fluid dynamics in stirred vessels — experiments and simulations of singleQQQQphase and liquidQQQQliquid systems. Chalmers University of Technology, Chalmers Reproservice, Göteburg, SwedenGoogle Scholar
  6. 6.
    Bejan A, Dincer I, Lorente S, Miguel AF, Reis AH (2004) Porous and complex flow structures in modern technologies. SpringerQQQQVerlag, Berlin Heidelberg New YorkGoogle Scholar
  7. 7.
    Ludwig A, Kretzmer G (1993) Shear stress induced variation of cell condition and productivity. J Biotechnol 27:217–223CrossRefGoogle Scholar
  8. 8.
    Cherry RS (1993) Animal cells in turbulent fluids: details of the physical stimulus and the biological response. Biotechnol Adv 11:279–299CrossRefGoogle Scholar
  9. 9.
    Olivier LA, Yen J, Reichert WM, Truskey GA (1999) ShortQQQQterm cell/substrate contact dynamics of subconfluent endothelial cells following exposure to laminar flow. Biotechnol Prog 15:33–42CrossRefGoogle Scholar
  10. 10.
    Meier SJ, Hatton A, Wang DIC (1999) Cell death from bursting bubbles: role of cell attachment to rising bubbles in sparged reactors. Biotechnol Bioeng 62(4):468–478CrossRefGoogle Scholar
  11. 11.
    Dey D, Emery AN (1999) Problems in predicting cell damage from bubble bursting. Biotechnol Bioeng. 65(2):240–245CrossRefGoogle Scholar
  12. 12.
    Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292:H1209–H1224CrossRefGoogle Scholar
  13. 13.
    Baksh D, Davies JE, Zandstra PW (2003) Adult human bone marrowQQQQderived mesenchymal progenitor cells are capable of adhesionQQQQindependent survival and expansion. Exp Haematol 31(8):723–732CrossRefGoogle Scholar
  14. 14.
    Croughan MS, Hamel JQQQQF, Wang DIC (1987) Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol Bioeng 29:130–141CrossRefGoogle Scholar
  15. 15.
    Nielsen LK (1999) Bioreactors for hematopoietic cell culture. Annu Rev Biomed Eng 01:129–152CrossRefGoogle Scholar
  16. 16.
    Van Wezel AL (1967) Growth of cellQQQQstrains and primary cells on microQQQQcarriers in homogenous culture. Nature 216(5110):64–65CrossRefGoogle Scholar
  17. 17.
    Youn BS, Sen A, Behie LA, GirgisQQQQGarbado A, Hassell JA (2006) ScaleQQQQup of breast cancer stem cell aggregate cultures to suspension bioreactors. Biotechnol Prog 22(3):801–810CrossRefGoogle Scholar
  18. 18.
    VunjakQQQQNovakovic G, Meinel L, Altman G, Kaplan D (2005) Bioreactor cultivation of osteochondral grafts. Orthod Craniofacial Res 8:209–218CrossRefGoogle Scholar
  19. 19.
    Kreke MR, Huckle WR, Goldstein AS (2005) Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner. Bone 36:1047–1055CrossRefGoogle Scholar
  20. 20.
    Sikavitas VI, Bancroft GN, Holtorf HL, Jansen JA, Mikos AG (2003) Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc Natl Acad Sci U S A 100(25):14683–14688CrossRefGoogle Scholar
  21. 21.
    Wang Y, Uemura T, Dong J, Kojima H, Tanaka J, Tateishi T (2003) Application of perfusion culture system improves in vitro and in vivo osteogenesis of bone marrowQQQQderived osteoblastic cells in porous ceramic materials. Tissue Eng 9(6):1205–1214CrossRefGoogle Scholar
  22. 22.
    Yu X, Botchwey EA, Levine EM, Pollack SR, Laurecin CT (2004) BioreactorQQQQbased bone tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. Proc Natl Acad Sci U S A 101(31):11203–11208CrossRefGoogle Scholar
  23. 23.
    Davidson KM, Sushil S, Eggleton CD, Marten MR (2003) Using computational fluid dynamics software to estimate circulation time distributions in bioreactors. Biotechnol Prog 19:1480–1486CrossRefGoogle Scholar
  24. 24.
    Sucosky P, Osorio DF, Brown JB, Neitzel P (2004) Fluid mechanics of a spinnerQQQQflask bioreactor. Biotechnol Bioeng 85(1):34–46CrossRefGoogle Scholar
  25. 25.
    Yu P, Lee TS, Zeng Y, Low HT (2005) Fluid dynamics of a microQQQQbioreactor for tissue engineering. Fluid Dya Mater Process 1(3):235–246Google Scholar
  26. 26.
    Bilgen B, Barabion GA (2007) Location of scaffolds in bioreactors modulates the hydrodynamic environment experienced by engineered tissues. Biotechnol Bioeng 98(1):282–294CrossRefGoogle Scholar
  27. 27.
    Bueno EM, Bilgen B, Carrier RL, Barabino GA (2004) Increased rate of chondrocyte aggregation in a wavyQQQQwalled bioreactor. Biotechnol Bioeng 88(6):767–777CrossRefGoogle Scholar
  28. 28.
    Chen HQQQQC, Hu YQQQQC (2006) Bioreactors for tissue engineering. Biotechnol Lett 28:1415–1423CrossRefGoogle Scholar
  29. 29.
    Wiliams C, Wick TM (2004) Perfusion bioreactor for small diameter tissueQQQQengineered arteries. Tissue Eng 10(5/6):930–941CrossRefGoogle Scholar
  30. 30.
    Israelowitz M, Rizvi S, von Schroeder HP, Holmes C, Gille C (2007) Laminar flow reactor. United States Patent Application, 11/895645Google Scholar
  31. 31.
    Porter B, Zauel R, Stockman H, Guldberg R, Fyhrie D (2005) 3QQQQD computational modelling of media flow through scaffolds in a perfusion bioreactor. J Biomech 38:543–549CrossRefGoogle Scholar
  32. 32.
    Singh H, Ang ES, Lim TT, Hutmacher DW (2007) Flow modelling in a novel nonQQQQperfusion conical bioreactor. Biotechnol Bioeng 97(5):1291–1299CrossRefGoogle Scholar
  33. 33.
    Cioffi M, Boschetti F, Raimondi MT, Dubini G (2006) Modelling evaluation of the fluiddynamic microenvironment in tissue engineered constructs: a microQQQQCT based model. Biotechnol Bioeng 93(3):500–510CrossRefGoogle Scholar
  34. 34.
    Chung CA, Chen CW, Chen CP, Tseng CS (2007) Enhancement of cell growth in tissue engineering constructs under direct perfusion: modelling and simulation. Biotechnol Bioeng 97(6):1603–1616CrossRefGoogle Scholar
  35. 35.
    Moussy Y (2003) Convective flow through a hollow fiber bioartificial liver. Artif Organs 27(11):1041–1049CrossRefGoogle Scholar
  36. 36.
    Wolfe SP, Hsu E, Reid LM, Macdonald JM (2002) A novel multiQQQQcoaxial hollow fiber bioreactor for adherent cell types. Part 1: hydrodynamic studies. Biotechnol Bioeng 77(1):83–90CrossRefGoogle Scholar
  37. 37.
    Marfels G, Poyck PPC, Eloot S, Chamuleau RAFM, Verdonck PR (2006) ThreeQQQQdimensional numerical modelling and computational fluid dynamics simulations to analyze and improve oxygen availability in the AMC bioartificial liver. Ann Biomed Eng 34(11):1729–1744CrossRefGoogle Scholar
  38. 38.
    Gu W, Zhu X, Futai N, Cho BS, Takayama S (2004) Computerized microfluidic cell culture using elastomeric channels and Braille display. Proc Natl Acad Sci U S A 101(45):15861–15866CrossRefGoogle Scholar
  39. 39.
    Kleis SJ, Shreck S, Nerem RM (1990) A viscous pump bioreactor. Biotechnol Bioeng 36:771–777CrossRefGoogle Scholar
  40. 40.
    Begley CM, Kleis SJ (2000) The fluid dynamic and shear environment in the NASA/JSC rotatingQQQQwall perfusedQQQQvessel bioreactor. Biotechnol Bioeng 70(1):32–40CrossRefGoogle Scholar
  41. 41.
    Curran SJ, Black RA (2005) Oxygen transport and cell viability in an annular flow bioreactor: comparison of laminar Coquette and TaylorQQQQVortex flow regimes. Biotechnol Bioeng 89(7):766–774CrossRefGoogle Scholar
  42. 42.
    Märkl H, Pörtner R (2003) Bioreaktoren. Chemie Ingenieur Technik 75(12):1888—1889CrossRefGoogle Scholar
  43. 43.
    Suck K, Behr L, Fischer M, Hoffmeister H, van Griensven M, Stahl F, Scheper T, Kasper C (2007) Cultivation of MC3T3QQQQE1 cells on a newly developed material (Sponcram) using a rotating bed system bioreactor. J Biomed Mat Res A 80(2):268–275CrossRefGoogle Scholar
  44. 44.
    Chen HQQQQC, Lee HQQQQP, Sung MQQQQL, Liao CQQQQJ, Hu YQQQQCr(2004) A novel rotatingQQQQshaft bioreactor for twoQQQQphase cultivation of tissueQQQQengineered cartilage. Biotechnol Prog 20:1802–1809CrossRefGoogle Scholar
  45. 45.
    Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284:489–493CrossRefGoogle Scholar
  46. 46.
    Hoerstrup SP, Zund G, Sodian R, Schnell AM, Grunenfelder J, Turina MJ (2001) Tissue engineering of small calibre vascular grafts. Eur J Cardiothorac Surg 20:164–169CrossRefGoogle Scholar
  47. 47.
    Thompson CA, ColonQQQQHernandez P, Pomerantseva I, MacNeil BD, Nasseri B, Vacanti JP, Oesterle SN (2002) A novel pulsatile, laminar flow bioreactor for the development of tissueQQQQ engineered vascular structures. Tissue Eng 8(6):1083–1088CrossRefGoogle Scholar
  48. 48.
    Hildebrand DK, Wu ZJJ, Mayer JE, Sacks MS (2004) Design and hydrodynamic evaluation of a novel pulsatile bioreactor for biologically active heart valves. Ann Biomed Eng 32:1039–1049CrossRefGoogle Scholar
  49. 49.
    Aunins JG, Brader B, Caola A, Griffiths J, Katz M, Licari P, Ram K, Ranucci CS, Zhou W (2003) Fluid mechanics, cell distribution, and environment in CellCube bioreactors. Biotechnol Prog 19(1):2–8CrossRefGoogle Scholar
  50. 50.
    Watanabe S, Inagaki S, Kinouchi I, Takai H, Masuda Y, Mizuno S (2005) Hydrostatic pressure/perfusion culture system designed and validated for tissue engineering. J Biosci Bioeng 100(1):105–111CrossRefGoogle Scholar
  51. 51.
    Dusting J, Sheridan J, Hourigan K (2006) A fluid dynamics approach to bioreactor design for cell and tissue culture. Biotechnol Bioeng 94(6):1196–1208CrossRefGoogle Scholar
  52. 52.
    Fishbane PM, Gasiorowicz S, Thornton ST (1993) Physics for scientists and engineers, 2nd edn. PrenticeQQQQHall, Inc., Upper Saddle River, New JerseyGoogle Scholar
  53. 53.
    Koynov A, Tryggvason G, Khinast JG (2007) Characterization of the localized hydrodynamic shear forces and dissolved oxygen distribution in sparged bioreactors. Biotechnol Bioeng 97(2):317–331CrossRefGoogle Scholar
  54. 54.
    Navier CLMH (1822) Memoire sur les lois du mouvement des fluids. Mem. Acad. Sci. Inst. France 6: 389–440Google Scholar
  55. 55.
    Stokes GG (1845) On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Transactions of the Cambridge Philosophical Society Vol VIII, p287Google Scholar
  56. 56.
    Stokes GG (1880) Mathematical and Physical Papers (reprinted from the original journals and transactions, with additional notes by the author). Cambridge at the university press, Vol I, p75–129Google Scholar
  57. 57.
    Hinze JO (1975) Turbulence. 2nd Edition, McGrawQQQQHill, New York, p537–566Google Scholar
  58. 58.
    Darcy HPG (1856) Les fontaines publiques de la ville de Dijon. Dalmont, Paris (647p)Google Scholar
  59. 59.
    De Pitot H (1732) Description d'une machine pour mesurer la vitesse des eaux et la sillage des vaisseaux. Memoires de l'Academie des Sciences, ParisGoogle Scholar
  60. 60.
    Prandtl L (1942) Führer durch die Strömungslehre. 1. Auflage Verlag Vieweg & Sohn,raunschweigGoogle Scholar
  61. 61.
    Prandtl L, Oertel H jr (2002) Kapitel 4: Dynamik der Flüssigkeiten und Gase, p57–176 in: Prandtl — Führer durch die Strömungslehre. Grundlagen und Phänomene. 11. überarbeitete und erweiterte Auflage, Herausgeber Oertel H jr., Verlag Vieweg, BraunschweigGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • B. Weyand
    • 1
  • M. Israelowitz
    • 2
  • H. P. von Schroeder
    • 3
  • P. M. Vogt
    • 1
  1. 1.Department of Plastic, Hand and Reconstructive Surgery OE 6260Hannover Medical SchoolHannoverGermany
  2. 2.Biomimetics Technologies Inc.TorontoCanada
  3. 3.Department of Surgery, University Hand Program and Bone Lab University of TorontoToronto Western HospitalTorontoCanada

Personalised recommendations