Advertisement

Word of Mouth: Rumor Dissemination in Social Networks

  • Jan Kostka
  • Yvonne Anne Oswald
  • Roger Wattenhofer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5058)

Abstract

In this paper we examine the diffusion of competing rumors in social networks. Two players select a disjoint subset of nodes as initiators of the rumor propagation, seeking to maximize the number of persuaded nodes. We use concepts of game theory and location theory and model the selection of starting nodes for the rumors as a strategic game. We show that computing the optimal strategy for both the first and the second player is NP-complete, even in a most restricted model. Moreover we prove that determining an approximate solution for the first player is NP-complete as well. We analyze several heuristics and show that—counter-intuitively—being the first to decide is not always an advantage, namely there exist networks where the second player can convince more nodes than the first, regardless of the first player’s decision.

Keywords

Span Tree Location Theory Vertex Cover Facility Location Problem Vertex Cover Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social networks. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 306–311. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Breban, R., Vardavas, R., Blower, S.: Linking population-level models with growing networks: A class of epidemic models. Physical Review E 72(4) (2005)Google Scholar
  3. 3.
    Carnes, T., Nagarajan, C., Wild, S.M., van Zuylen, A.: Maximizing influence in a competitive social network: a follower’s perspective. In: Proceedings of the 9th international conference on Electronic commerce (ICEC) (2007)Google Scholar
  4. 4.
    Cheong, O., Har-Peled, S., Linial, N., Matoušek, J.: The one-round voronoi game. Discrete & Computational Geometry (2004)Google Scholar
  5. 5.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the 7th international conference on Knowledge discovery and data mining (KDD) (2001)Google Scholar
  6. 6.
    Goldenberg, J., Libai, B., Muller, E.: Using complex systems analysis to advance marketing theory development. Academy of Marketing Sc. Rev. (2001)Google Scholar
  7. 7.
    Goldman, A.J.: Optimal center location in simple networks. Transportation Science, 212–221 (1971)Google Scholar
  8. 8.
    Granovetter, M.: Threshold models of collective behavior. American Journal of Sociology 83(6), 1420–1443 (1979)CrossRefGoogle Scholar
  9. 9.
    Hakimi, S.: Locations with Spatial Interactions: Competitive Locations and Games. Discrete Location Theory, 439–478 (1990)Google Scholar
  10. 10.
    Hansen, P., Thisse, J.-F., Wendell, R.E.: Equilibrium Analysis for Voting and Competitive Location Problems. Discrete Location Theory, 479–501 (1990)Google Scholar
  11. 11.
    Hotelling, H.: Stability in Competition. Economic Journal 39, 41–57 (1929)CrossRefGoogle Scholar
  12. 12.
    Leskovec, J., Adamic, L., Huberman, B.: The dynamics of viral marketing. In: Proceedings of the 7th conference on Electronic commerce (EC) (2006)Google Scholar
  13. 13.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the Spread of Influence through a Social Network. In: Proceedings of the 9th international conference on knowledge discovery and data mining (KDD) (2003)Google Scholar
  14. 14.
    Kempe, D., Kleinberg, J., Tardos, É.: Influential Nodes in a Diffusion Model for Social Networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Leskovec, J., Singh, A., Kleinberg, J.: Patterns of influence in a recommendation network. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing 7(1), 76–80 (2003)CrossRefGoogle Scholar
  17. 17.
    Marder, M.: Dynamics of epidemics on random networks. Physical Review E 75(6), 066103 (2007)CrossRefGoogle Scholar
  18. 18.
    Moore, C., Newman, M.E.J.: Epidemics and percolation in small-world networks. Physical Review E 61(5), 5678–5682 (2000)CrossRefGoogle Scholar
  19. 19.
    Newman, M.E.J.: Spread of epidemic disease on networks. Physical Review E 66(1), 016128 (2002)CrossRefGoogle Scholar
  20. 20.
    Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Physical Review E 63(6), 066117 (2001)CrossRefGoogle Scholar
  21. 21.
    Schelling, T.: Micromotives and Macrobehavior. Norton (1978)Google Scholar
  22. 22.
    Slater, P.J.: Maximin facility location. Journal of National Bureau of Standards 79B, 107–115 (1975)MathSciNetGoogle Scholar
  23. 23.
    Stackelberg, H.V.: Marktform und Gleichgewicht. Julius Springer, Heidelberg (1934)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jan Kostka
    • 1
  • Yvonne Anne Oswald
    • 1
  • Roger Wattenhofer
    • 1
  1. 1.Computer Engineering and Networks LaboratoryETH ZurichSwitzerland

Personalised recommendations