Deterministic Defuzzification Based on Spectral Projected Gradient Optimization

  • Tibor Lukić
  • Nataša Sladoje
  • Joakim Lindblad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5096)

Abstract

We apply deterministic optimization based on Spectral Projected Gradient method in combination with concave regularization to solve the minimization problem imposed by defuzzification by feature distance minimization. We compare the performance of the proposed algorithm with the methods previously recommended for the same task, (non-deterministic) simulated annealing and (deterministic) DC based algorithm. The evaluation, including numerical tests performed on synthetic and real images, shows advantages of the new method in terms of speed and flexibility regarding inclusion of additional features in defuzzification. Its relatively low memory requirements allow the application of the suggested method for defuzzification of 3D objects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birgin, E.G., Martínez, J.M., Raydan, M.: Algorithm: 813: SPG - Software for convex-constrained optimization. ACM Transactions on Mathematical Software 27, 340–349 (2001)CrossRefMATHGoogle Scholar
  2. 2.
    Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. on Optimization 10, 1196–1211 (2000)CrossRefMATHGoogle Scholar
  3. 3.
    Giannessi, F., Niccolucci, F.: Connections between nonlinear and integer programming problems. Symposia Mathematica, 161–176 (1976)Google Scholar
  4. 4.
    Lindblad, J., Lukić, T., Sladoje, N.: Defuzzification by Feature Distance Minimization Based on DC Programming. In: Proc. of 5th International Symposium on Image and Signal Processing and Analysis, Istanbul, Turkey, pp. 373–379 (2007)Google Scholar
  5. 5.
    Lindblad, J., Sladoje, N., Lukić, T.: Feature Based Defuzzification in Z 2 and Z 3 Using a Scale Space Approach. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 378–389. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Lindblad, J., Sladoje, N.: Feature Based Defuzzification at Increased Spatial Resolution. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 131–143. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Rosenfeld, A., Haber, S.: The perimeter of a fuzzy subset. Pattern Recognition 18, 125–130 (1985)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Tibor Lukić
    • 1
  • Nataša Sladoje
    • 1
  • Joakim Lindblad
    • 2
  1. 1.Faculty of EngineeringUniversity of Novi SadSerbia
  2. 2.Centre for Image AnalysisSLUUppsalaSweden

Personalised recommendations