The Parameterized Complexity of the Rectangle Stabbing Problem and Its Variants

  • Michael Dom
  • Somnath Sikdar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5059)


We study an NP-complete geometric covering problem called d -Dimensional Rectangle Stabbing, where, given a set of axis-parallel d-dimensional hyperrectangles, a set of axis-parallel (d − 1)-dimensional hyperplanes and a positive integer k, the question is whether one can select at most k of the hyperplanes such that every hyperrectangle is intersected by at least one of these hyperplanes. This problem is well-studied from the approximation point of view, while its parameterized complexity remained unexplored so far. Here we show, by giving a nontrivial reduction from a problem called Multicolored Clique, that for d ≥ 3 the problem is W[1]-hard with respect to the parameter k. For the case d = 2, whose parameterized complexity is still open, we consider several natural restrictions and show them to be fixed-parameter tractable.


Vertical Line Greedy Algorithm Parameterized Complexity Parameterized Problem Edge Color 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Even, G., Rawitz, D., Shahar, S.: Approximation algorithms for capacitated rectangle stabbing. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 18–29. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Fellows, M.R.: Personal communication (September 2007)Google Scholar
  4. 4.
    Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems (manuscript, 2007)Google Scholar
  5. 5.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)Google Scholar
  6. 6.
    Gaur, D.R., Ibaraki, T., Krishnamurti, R.: Constant ratio approximation algorithms for the rectangle stabbing problem and the rectilinear partitioning problem. J. Algorithms 43(1), 138–152 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Giannopoulos, P., Knauer, C., Whitesides, S.: Parameterized complexity of geometric problems. The Computer Journal (2007), doi:10.1093/comjnl/bxm053Google Scholar
  8. 8.
    Hassin, R., Megiddo, N.: Approximation algorithms for hitting objects with straight lines. Discrete Appl. Math. 30, 29–42 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kovaleva, S., Spieksma, F.C.R.: Approximation of a geometric set covering problem. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 493–501. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Kovaleva, S., Spieksma, F.C.R.: Approximation algorithms for rectangle stabbing and interval stabbing problems. SIAM J. Discrete Math. 20(3), 748–768 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Langerman, S., Morin, P.: Covering things with things. Discrete Comput. Geom. 33(4), 717–729 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Mecke, S., Schöbel, A., Wagner, D.: Station location – complexity and approximation. In: Proc. 5th ATMOS, IBFI Dagstuhl, Germany (2005)Google Scholar
  13. 13.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Michael Dom
    • 1
  • Somnath Sikdar
    • 2
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.The Institute of Mathematical SciencesC.I.T CampusChennaiIndia

Personalised recommendations