Advertisement

Using Automated Planning for Trusted Self-organising Organic Computing Systems

  • Benjamin Satzger
  • Andreas Pietzowski
  • Wolfgang Trumler
  • Theo Ungerer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5060)

Abstract

The increasing complexity of computer-based technical systems require new ways to control them. The initiatives Organic Computing and Autonomic Computing address exactly this issue. They demand future computer systems to adapt dynamically and autonomously to their environment. In this paper we propose a new approach based on automated planning to realise self-organising capabilities for complex distributed computing systems. The user/administrator only defines objectives describing the conditions which should hold in the system, whereas the system itself is responsible for meeting them using a planning engine. As many planning algorithms are known to be sound and complete, formal guarantees can be given. Thus we aim at building trusted self-organising distributed computer system which are suitable to control real technical systems. Our approach is demonstrated and evaluated on the basis of a simulated production cell with robots and carts. We propose and evaluate two optimisations.

Keywords

Organic Computing self-organisation automated planning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bahat, R.M., Bauer, M.A., Vieira, E.M., Baek, O.K.: Using policies to drive autonomic management. In: WOWMOM 2006: Proceedings of the 2006 International Symposium on on World of Wireless, Mobile and Multimedia Networks, Washington, DC, USA, pp. 475–479. IEEE Computer Society, Los Alamitos (2006)CrossRefGoogle Scholar
  2. 2.
    de Weerdt, M., ter Mors, A., Witteveen, C.: Multi-agent planning: An introduction to planning and coordination. In: Handouts of the European Agent Summer School, pp. 1–32 (2005)Google Scholar
  3. 3.
    Durfee, E.H., Lesser, V.R.: Partial global planning: A coordination framework for distributed hypothesis formation. IEEE Transactions on Systems, Man, and Cybernetics 21(5), 1167–1183 (1991)CrossRefGoogle Scholar
  4. 4.
    Fikes, R., Nilsson, N.J.: STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence-4, 1971 2, 189–208 (1971)zbMATHGoogle Scholar
  5. 5.
    Gerevini, A., Schubert, L.K.: Accelerating partial-order planners: Some techniques for effective search control and pruning. CoRR cs.AI/9609101 (1996)Google Scholar
  6. 6.
    Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kaufman, San Francisco (2004)zbMATHGoogle Scholar
  7. 7.
    Güdemann, M., Ortmeier, F., Reif, W.: Formal modeling and verification of systems with self-x properties. In: Yang, L.T., Jin, H., Ma, J., Ungerer, T. (eds.) ATC 2006. LNCS, vol. 4158, pp. 38–47. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Horn, P.: Autonomic computing: Ibms perspective on the state of information technology (2001), http://www.research.ibm.com/autonomic/
  9. 9.
    Kephart, J.O.: Research challenges of autonomic computing. In: Inverardi, P., Jazayeri, M. (eds.) ICSE 2005. LNCS, vol. 4309, pp. 15–22. Springer, Heidelberg (2006)Google Scholar
  10. 10.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)CrossRefMathSciNetGoogle Scholar
  11. 11.
    McDermott, D.: Pddl — the planning domain definition language (1998)Google Scholar
  12. 12.
    Müller-Schloer, C., von der Malsburg, C., Würtz, R.P.: Organic computing. Informatik Spektrum 27(4), 332–336 (2004)CrossRefGoogle Scholar
  13. 13.
    Nguyen, X., Kambhampati, S.: Reviving partial order planning. In: Nebel, B. (ed.) Proceedings of the seventeenth International Conference on Artificial Intelligence (IJCAI 2001), August 4–10, 2001, pp. 459–466. Morgan Kaufmann, San Francisco (2001)Google Scholar
  14. 14.
    Schmeck, H.: Organic computing-vision and challenge for system design. In: Proceedings of the Parallel Computing in Electrical Engineering, International Conference on (PARELEC 2004), Washington, DC, USA, pp. 3–3. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  15. 15.
    Schmeck, H.: Organic computing. Künstliche Intelligenz 05(3), 68–69 (2005)Google Scholar
  16. 16.
    Srivastava, B., Kambhampati, S.: The case for automated planning in autonomic computing. In: ICAC, pp. 331–332. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  17. 17.
    Trumler, W., Bagci, F., Petzold, J., Ungerer, T.: AMUN - autonomic middleware for ubiquitous environments applied to the smart doorplate. ELSEVIER Advanced Engineering Informatics 19(3), 243–252 (2005)CrossRefGoogle Scholar
  18. 18.
    Weld, D.S.: An introduction to least commitment planning. AI Magazine 15(4), 27–61 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Benjamin Satzger
    • 1
  • Andreas Pietzowski
    • 1
  • Wolfgang Trumler
    • 1
  • Theo Ungerer
    • 1
  1. 1.Department of Computer ScienceUniversity of AugsburgAugsburgGermany

Personalised recommendations