Artificial Immune System Based Robot Anomaly Detection Engine for Fault Tolerant Robots

  • Bojan Jakimovski
  • Erik Maehle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5060)


Robot anomaly detection method described in this paper uses an approach inspired by an immune system for detecting failures within autonomous robot system. The concept is based on self-nonself discrimination and clonal selection principles found within the natural immune system. The approach applies principles of fuzzy logic for representing and processing the information within the artificial immune system. Throughout the paper we explain the working principle of RADE (Robot Anomaly Detection Engine) approach and we show its practical effectiveness through several experimental test cases.


Robot anomaly detection robot fault detection artificial immune system clonal selection self-healing self-reconfiguration fault tolerant robot six legged robot 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haldar, B., Sarkar, N.: Robust fault detection and isolation in mobile robot. In: Proceedings of IFAC, Beijing, China (2006)Google Scholar
  2. 2.
    Forsdyke, D.R.: The Origins of the Clonal Selection theory of Immunity. FASEB. Journal 9, 164–166 (1995)Google Scholar
  3. 3.
    De Castro, L.N., Von Zuben, F.J.: Learning and Optimization using the clonal selection principle. IEEE Transaction on Evolutionary Computation, 239–251 (2002)Google Scholar
  4. 4.
    Cao, Y., Dasgupta, D.: An Immunogenetic Approach in Chemical Spectrum Recognition. In: Ghosh, Tsutsui (eds.) Advances in Evolutionary Computing, Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Nasraoui, O., Cardona, C., Rojas, C.: Using retrieval measures to asses similarity in mining dynamic web clickstreams. In: Proceeding of the eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining KDD (2005)Google Scholar
  6. 6.
    Pagnoni, A., Visconti, A.: An innate immune system for the protection of computer networks. In: Proceedings of the 4th international symposium on information and communication technologies. ACM International Conference Proceeding Series, vol. 92, pp. 63–68 (2005)Google Scholar
  7. 7.
    Michelan, R., Von Zuben, F.J.: Decentralized control system for autonomous navigation based on an evolved artificial immune network. In: CEC apos 2002. Proceedings of the 2002 Congress on Evolutionary Computation, vol. 2, pp. 1021–1026 (2002)Google Scholar
  8. 8.
    Singh, C.T., Nair, S.B.: An Artificial Immune System for a MultiAgent Robotics System. Transactions of Engineering, Computing and Technology 6, 308–311 (2005)Google Scholar
  9. 9.
    Sathyanath, S., Sahin, F.: AISIMAM – An Artificial Immune System Based Intelligent Multi Agent Model and its Application to a Mine Detection Problem. In: 1st International Conference on Artificial Immune Systems, Canterbury, UK (2002)Google Scholar
  10. 10.
    Neal, M., Feyereisl, J., Rascuna, R., Wang, X.: Don’t Touch Me, I’m Fine: Robot Autonomy Using an Artificial Innate Immune System. In: 5th International Conference on Artificial Immune Systems, Oeiras, Portugal (2006)Google Scholar
  11. 11.
    Canham, R., Jackson, A.H., Tyrrell, A.: Robot Error Detection Using an Artificial Immune System. In: Proceedings of the 2003 NASA/DoD Conference on Evolvable Hardware (2003)Google Scholar
  12. 12.
    De Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach, pp. 36–46. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  13. 13.
    Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-Nonself Discrimination in a Computer. In: Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy, IEEE Computer Society Press, Los Alamitos (1994)Google Scholar
  14. 14.
    Nino, F., Beltran, O.: A change detection software agent based on immune mixed selection. Evolutionary Computation. In: Proceedings of the 2002 Congress on CEC 2002, vol. 1, pp. 693–698 (2002)Google Scholar
  15. 15.
    Galeano, J.C., Veloza-Suan, A., Gonzalez, F.A.: A comparative analysis of artificial immune network models. In: Proceedings of the Conference on Genetic and Evolutionary Computation, Washington DC, USA, pp. 361–368 (2005)Google Scholar
  16. 16.
    El Sayed Auf, A., Mösch, F., Litza, M.: How the six-legged walking machine OSCAR handle leg amputations. In: Workshop on Bio-inspired Cooperative and Adaptive Behaviours in Robots, Rome, Italy (2006)Google Scholar
  17. 17.
    Jakimovski, B., Litza, M., Mösch, F., El Sayed Auf, A.: Development of an organic computing architecture for robot control. In: Informatik 2006 Workshop on Organic Computing - Status and Outlook, Dresden (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Bojan Jakimovski
    • 1
  • Erik Maehle
    • 1
  1. 1.Institute of Computer EngineeringUniversity LuebeckGermany

Personalised recommendations