Advertisement

Use Semantic Decision Tables to Improve Meaning Evolution Support Systems

  • Yan Tang
  • Robert Meersman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5061)

Abstract

Meaning Evolution Support Systems have been recently introduced as a real-time, scalable, community-based cooperative systems to support the ontology evolution. In this paper, we intend to address the problems of accuracy and effectiveness in Meaning Evolution Support Systems in general. We use Semantic Decision Tables to tackle these problems. A Semantic Decision Table separates general decision rules from the processes, bootstraps policies and template dependencies in the whole system. Recently, DOGMA-MESS (“Developing Ontology Grounded Methodology and Applications” framework based “Meaning Evolution Support Systems”) is developed at VUB STARLab as a collection of meaning evolution support systems. We embed Semantic Decision Tables in DOGMA-MESS to illustrate our approach. Semantic Decision Tables play the roles in both top-down and bottom-up processes of the meaning evolution cycle. The decision rules that consist of templates dependency rules are mainly responsible for the top-down process execution. The bottom-up process execution relies on the ones that contain the concept lifting algorithms.

Keywords

ontology Meaning Evolution Support System Semantic Decision Table 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aschoff, F.R., Schmalhofer, F., van Elst, L.: Knowledge mediation: a procedure for the cooperative construction of domain ontologies. In: Proc. of the ECAI 2004 workshop on Agent-Mediated Knowledge Management, pp. 29–38 (2004)Google Scholar
  2. 2.
    Benjamin, P., Menzel, C., Mayer, R., Fillion, F., Futrell, M., de Witte, P., Lingineni, M.: Idef5 method report. Technical Report F33615-C-90-0012, Knowledge Based Systems Inc., Texas (1994)Google Scholar
  3. 3.
    Braun, S., Schmidt, A., Walter, A.: Ontology maturing: a collaborative web 2.0 approach to ontology engineering. In: Proceedings of WWW 2007 (2007)Google Scholar
  4. 4.
    Casanovas, P., Casellas, N., Tempich, C., Vrandecic, D., Benjamins, R.: Opjk modeling methodology. In: Lehmann, J., Biasiotti, M.A., Francesconi, E., Sagri, M.T. (eds.) Legal Ontologies and Artificial Intelligence Techniques, International Conference on Artificail Intelligence and Law (ICAIL) WorkshopSeries, vol. 4, pp. 121–134. Wolf Legal Publishers (2007)Google Scholar
  5. 5.
    de Moor, A.: Ontology-Guided Meaning Negotiation in Communities of Practice. In: Mambrey, P., Gräther, W. (eds.) Proc. of the Workshop on the Design for Large-Scale Digital Communities at the 2nd International Conference on Communities and Technologies (C&T 2005), Milan, Italy (2005)Google Scholar
  6. 6.
    de Moor, A., De Leenheer, P., Meersman, R.: DOGMA-MESS: A Meaning Evolution Support System for Interorganizational Ontology Engineering. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 189–203. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Euzenat, J.: Building consensual knowledge bases: context and architecture. In: Mars, N.J.I. (ed.) Towards Very Large Knowledge Bases – Proc. of the KB&KS 1995 conference, pp. 143–155. IOS press, Amsterdam (1995)Google Scholar
  8. 8.
    Fernández, M., Gómez-Pérez, A., Juristo, N.: Methontology: from ontological art towards ontological engineering. In: Proceedings of the AAAI 1997 Spring Symposium Series on Ontological Engineering, Stanford, USA, pp. 33–40 (1997)Google Scholar
  9. 9.
    Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering. Advanced Information and Knowledge Processing Series. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge Sharing. In: Workshop on Formal Ontology, Padva, Italy. In book, Guarino, N., Poli, R. (eds.): Formal Ontology in Conceptual Analysis and Knowledge Representation. Kluwer Academic Publishers, Dordrecht (1993)Google Scholar
  11. 11.
    Grüninger, M., Fox, M.: Methodology for the design and evaluation of ontologies. In: Skuce, D. (ed.) IJCAI 1995 Workshop on Basic Ontological Issues in Knowledge Sharing (1995)Google Scholar
  12. 12.
    Guarino, N., Poli, R. (eds.): Formal Ontology in Conceptual Analysis and Knowledge Representation. The International Journal of Human and Computer Studies 43(5/6) (1995) (special issue)Google Scholar
  13. 13.
    Halpin, T.: Information Modeling and Relational Database: from Conceptual Analysis to Logical Design. Morgan-Kaufmann, San Francisco (2001)Google Scholar
  14. 14.
    Madhavan, J., Bernstein, P., Domingos, P., Halevy, A.: Representing and reasoning about mappings between domain models. In: Eighteenth National Conference on Artificial Intelligence (AAAI 2002), Edmonton, Canada, pp. 80–86. American Association for Artificial Intelligence (2002) ISBN:0-262-51129-0Google Scholar
  15. 15.
    Mizoguchi, R.: Tutorial on ontological engineering. New Generation Computing 21(2) (2003)Google Scholar
  16. 16.
    Myaeng, S.H., Lopez-Lopez, A.: Conceptual graph matching: a flexible algorithm and experiments. International Journal of Pattern Recognition and Artificial Intelligence 4(2), Special issue Conceptual graphs workshop, pp. 107–126. World Scientific Publishing Co., Inc, Singapore (1992) ISSN:0218-0014 Google Scholar
  17. 17.
    Sadri, F., Ullman, J.D.: Template dependencies: a large class of dependencies in Relational Databases and its complete axiomatization. Journal of the ACM (JACM) 29(2), 363–372 (1982)CrossRefzbMATHGoogle Scholar
  18. 18.
    Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., Van de Velde, W., Wielinga, B.: Knowledge Engineering and Management — The CommonKADS Methodology. The MIT Press, Cambridge (1999)Google Scholar
  19. 19.
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading, Massachusetts (1984)zbMATHGoogle Scholar
  20. 20.
    Sowa, J.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole Publishing Co., Pacific Grove (2000)Google Scholar
  21. 21.
    Spyns, P., Meersman, R., Jarrar, M.: Data Modeling versus Ontology Engineering. SIGMOD Record: Special Issue on Semantic Web and Data Management 31(4), 12–17 (2002)Google Scholar
  22. 22.
    Spyns, P., Tang, Y., Meersman, R.: A model theory inspired collaborative ontology engineering methodology. Journal of Applied Ontology, Special issue on Guizzardi, G., Halpin, T.: Ontological Foundations for Conceptual Modeling, vol. 4(1), pp. 1–23. IOS Press, Amsterdam (2007) Google Scholar
  23. 23.
    Tang, Y.: On Conducting a Decision Group to Construct Semantic Decision Tables. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2007, Part I. LNCS, vol. 4805, pp. 534–543. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Tang, Y., Meersman, R.: Towards building semantic decision table with domain ontologies. In: Man-chung, C., Liu, J.N.K., Cheung, R., Zhou, J. (eds.) Proceedings of International Conference of information Technology and Management (ICITM 2007), pp. 14–21. ISM Press (2007) ISBN 988-97311-5-0Google Scholar
  25. 25.
    Tang, Y., Meersman, R.: On constructing semantic decision tables. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 34–44. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Tang, Y., Meersman, R.: Organizing Meaning Evolution Supporting Systems Using Semantic Decision Tables. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp. 272–284. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Uschold, M., King, M.: Towards a methodology for building ontologies. In: Skuce, D. (ed.) IJCAI 1995 Workshop on Basic Ontological Issues in Knowledge Sharing (1995)Google Scholar
  28. 28.
    Zhao, G., Meersman, R.: Architecting ontology for Scalability and Versatility. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3761, pp. 1605–1614. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yan Tang
    • 1
  • Robert Meersman
    • 1
  1. 1.Semantic Technology and Application Research Laboratory (STARLab), Department of Computer ScienceVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations