Molecular and Cellular Mechanisms of Action of Nicotine in the CNS

  • Jacques Barik
  • Susan Wonnacott
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 192)

Abstract

Nicotine achieves its psychopharmacological effects by interacting with nicotinic acetylcholine receptors (nAChRs) in the brain. There are numerous subtypes of nAChR that differ in their properties, including their sensitivity to nicotine, permeability to calcium and propensity to desensitise. The nAChRs are differentially localised to different brain regions and are found on presynaptic terminals as well as in somatodendritic regions of neurones. Through their permeability to cations, these ion channel proteins can influence both neuronal excitability and cell signalling mechanisms, and these various responses can contribute to the development or maintenance of dependence. However, many questions and uncertainties remain in our understanding of these events and their relevance to tobacco addiction. In this chapter, we briefly overview the fundamental characteristics of nAChRs that are germane to nicotine's effects and then consider the cellular responses to acute and chronic nicotine, with particular emphasis on dopamine systems because they have been the most widely studied in the context of nicotine dependence. Where appropriate, methodological aspects are critically reviewed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson DJ, Puttfarcken PS, Jacobs I, Faltynek C (2000) Assessment of nicotinic acetylcholine receptor-mediated release of [3H]-norepinephrine from rat brain slices using a new 96-well format assay. Neuropharmacology 39:2663–2672PubMedCrossRefGoogle Scholar
  2. Anney RJ, Olsson CA, Lotfi-Miri M, Patton GC, Williamson R (2004) Nicotine dependence in a prospective population-based study of adolescents: the protective role of a functional tyrosine hydroxylase polymorphism. Pharmacogenetics 14:73–81PubMedCrossRefGoogle Scholar
  3. Auerbach A, Akk G (1998) Desensitization of mouse nicotinic acetylcholine receptor channels. A two-gate mechanism. J Gen Physiol 112:181–197PubMedCrossRefGoogle Scholar
  4. Balfour DJ (2004) The neurobiology of tobacco dependence: a preclinical perspective on the role of the dopamine projections to the nucleus accumbens. Nicotine Tob Res 6:899–912PubMedCrossRefGoogle Scholar
  5. Barik J, Wonnacott S (2006) Indirect modulation by alpha7 nicotinic acetylcholine receptors of noradrenaline release in rat hippocampal slices: interaction with glutamate and GABA systems and effect of nicotine withdrawal. Mol Pharmacol 69:618–628PubMedCrossRefGoogle Scholar
  6. Benwell ME, Balfour DJ (1992) The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. Br J Pharmacol 105:849–856PubMedGoogle Scholar
  7. Benwell ME, Balfour DJ (1997) Regional variation in the effects of nicotine on catecholamine overflow in rat brain. Eur J Pharmacol 325:13–20PubMedCrossRefGoogle Scholar
  8. Benwell ME, Balfour DJ, Anderson JM (1988) Evidence that tobacco smoking increases the density of (-)-[3H]nicotine binding sites in human brain. J Neurochem 50:1243–1247PubMedCrossRefGoogle Scholar
  9. Berke JD, Hyman SE (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25:515–532PubMedCrossRefGoogle Scholar
  10. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21PubMedCrossRefGoogle Scholar
  11. Bertrand D, Galzi JL, Devillers-Thiery A, Bertrand S, Changeux JP (1993) Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal alpha 7 nico-tinic receptor. Proc Natl Acad Sci USA 90:6971–6975PubMedCrossRefGoogle Scholar
  12. Bitner RS, Bunnelle WH, Anderson DJ, Briggs CA, Buccafusco J, Curzon P, Decker MW, Frost JM, Gronlien JH, Gubbins E, Li J, Malysz J, Markosyan S, Marsh K, Meyer MD, Nikkel AL, Radek RJ, Robb HM, Timmermann D, Sullivan JP, Gopalakrishnan M (2007) Broad-spectrum efficacy across cognitive domains by alpha7 nicotinic acetylcholine receptor agonism correlates with activation of ERK1/2 and CREB phosphorylation pathways. J Neurosci. 27:10578–10587PubMedCrossRefGoogle Scholar
  13. Blount P, Merlie JP (1989) Molecular basis of the two nonequivalent ligand binding sites of the muscle nicotinic acetylcholine receptor. Neuron 3:349–357PubMedCrossRefGoogle Scholar
  14. Brami-Cherrier K, Valjent E, Hervé D, Darragh J, Corvol JC, Pages C, Arthur SJ, Girault JA, Caboche J (2005) Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J Neurosci 25:11444–11454PubMedCrossRefGoogle Scholar
  15. Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der OJ, Smit AB, Sixma TK (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411:269–276PubMedCrossRefGoogle Scholar
  16. Brunzell DH, Russell DS, Picciotto MR (2003) In vivo nicotine treatment regulates mesocorticol-imbic CREB and ERK signaling in C57Bl/6J mice. J Neurochem 84:1431–1441PubMedCrossRefGoogle Scholar
  17. Buisson B, Bertrand D (2001) Chronic exposure to nicotine upregulates the human alpha4beta2 nicotinic acetylcholine receptor function. J Neurosci 21:1819–1829PubMedGoogle Scholar
  18. Celie PH, van Rossum-Fikkert SE, van Dijk WJ, Brejc K, Smit AB, Sixma TK (2004) Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 41:907–914PubMedCrossRefGoogle Scholar
  19. Champtiaux N, Changeux JP (2002) Knock-out and knock-in mice to investigate the role of nico-tinic receptors in the central nervous system. Curr Drug Targets CNS Neurol Disord 1:319–330PubMedCrossRefGoogle Scholar
  20. Changeux JP, Bertrand D, Corringer PJ, Dehaene S, Edelstein S, Lena C, Le Novere N, Marubio L, Picciotto M, Zoli M (1998) Brain nicotinic receptors: structure and regulation, role in learning and reinforcement. Brain Res Brain Res Rev 26:198–216PubMedCrossRefGoogle Scholar
  21. Changeux JP, Taly A (2008) Nicotinic receptors, allosteric proteins and medicine. Trends Mol Med 14:93–102PubMedGoogle Scholar
  22. Clarke PB, Reuben M (1996) Release of [3H]-noradrenaline from rat hippocampal synaptosomes by nicotine: mediation by different nicotinic receptor subtypes from striatal [3H]-dopamine release. Br J Pharmacol 117:595–606PubMedGoogle Scholar
  23. Collin T, Marty A, Llano I (2005) Presynaptic calcium stores and synaptic transmission. Curr Opin Neurobiol 15:275–281PubMedCrossRefGoogle Scholar
  24. Corringer PJ, Le Novere N, Changeux JP (2000) Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol 40:431–458PubMedCrossRefGoogle Scholar
  25. Couey JJ, Meredith RM, Spijker S, Poorthuis RB, Smit AB, Brussaard AB, Mansvelder HD (2007) Neuron distributed network actions by nicotine increase the threshold for spike-timing-dependent plasticity in prefrontal cortex. Neuron 54:73–87PubMedCrossRefGoogle Scholar
  26. Cui C, Booker TK, Allen RS, Grady SR, Whiteaker P, Marks MJ, Salminen O, Tritto T, Butt CM, Allen WR, Stitzel JA, McIntosh JM, Boulter J, Collins AC, Heinemann SF (2003) The beta3 nicotinic receptor subunit: a component of alpha-conotoxin MII-binding nicotinic acetylcholine receptors that modulate dopamine release and related behaviors. J Neurosci 23:11045–11053PubMedGoogle Scholar
  27. Dajas-Bailador F, Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci 25:317–324PubMedCrossRefGoogle Scholar
  28. Dani JA, Bertrand D (2007) Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 47:699–729PubMedCrossRefGoogle Scholar
  29. Dani JA, Heinemann S (1996) Molecular and cellular aspects of nicotine abuse. Neuron 16:905–908PubMedCrossRefGoogle Scholar
  30. Darsow T, Booker TK, Pina-Crespo JC, Heinemann SF (2005) Exocytic trafficking is required for nicotine-induced up-regulation of alpha 4 beta 2 nicotinic acetylcholine receptors. J Biol Chem 280:18311–18320PubMedCrossRefGoogle Scholar
  31. Dellisanti CD, Yao Y, Stroud JC, Wang ZZ, Chen L (2007) Crystal structure of the extracellular domain of nAChR alpha1 bound to alpha-bungarotoxin at 1.94 A resolution. Nat Neurosci 10:953–962PubMedCrossRefGoogle Scholar
  32. Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114PubMedCrossRefGoogle Scholar
  33. Dickinson JA, Hanrott KE, Mok MH, Kew JN, Wonnacott S (2007) Differential coupling of alpha7 and non-alpha7 nicotinic acetylcholine receptors to calcium-induced calcium release and voltage-operated calcium channels in PC12 cells. J Neurochem 100:1089–1096PubMedCrossRefGoogle Scholar
  34. Dickinson JA, Kew JN, Wonnacott S (2008) Presynaptic alpha7 and beta2-containing nicotinic acetylcholine receptors modulate excitatory amino acid release from rat prefrontal cortex nerve terminals via distinct cellular mechanisms. Mol Pharmacol 74:348–359PubMedCrossRefGoogle Scholar
  35. Done C, Silverstone P, Sharp T (1992) Effect of naloxone-precipitated morphine withdrawal on noradrenaline release in rat hippocampus in vivo. Eur J Pharmacol 215:333–336PubMedCrossRefGoogle Scholar
  36. Dunckley T, Lukas RJ (2003) Nicotine modulates the expression of a diverse set of genes in the neuronal sh-sy5y cell line. J Biol Chem 278:15633–15640PubMedCrossRefGoogle Scholar
  37. Dunckley, Lukas RJ (2006) Nicotinic modulation of gene expression in SH-SY5Y neuroblastoma cells. Brain Res 1116:39–49PubMedCrossRefGoogle Scholar
  38. Eilers H, Schaeffer E, Bickler PE, Forsayeth JR (1997) Functional deactivation of the major neuronal nicotinic receptor caused by nicotine and a protein kinase C-dependent mechanism. Mol Pharmacol 52:1105–1112PubMedGoogle Scholar
  39. Emptage NJ, Reid CA, Fine A (2001) Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron 29:197–208PubMedCrossRefGoogle Scholar
  40. Exley R, Cragg SJ (2008) Presynaptic nicotinic receptors: a dynamic and diverse cholinergic filter of striatal dopamine neurotransmission. Br J Pharmacol 153:S283–S297PubMedCrossRefGoogle Scholar
  41. Exley R, Clements MA, Hartung H, McIntosh JM, Cragg SJ (2007) Alpha6-Containing nicotinic acetylcholine receptors dominate the nicotine control of nopamine neurotransmission in nucleus accumbens. Neuropsychopharmacology 33:2158–2166PubMedCrossRefGoogle Scholar
  42. Fabian-Fine R, Skehel P, Errington ML, Davies HA, Sher E, Stewart MG, Fine A (2001) Ultra-structural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. J Neurosci 21:7993–8003PubMedGoogle Scholar
  43. Fagen ZM, Mitchum R, Vezina P, McGehee DS (2007) Enhanced nicotinic receptor function and drug abuse vulnerability. J Neurosci 27:8771–8778PubMedCrossRefGoogle Scholar
  44. Fu Y, Matta SG, Brower VG, Sharp BM (2001) Norepinephrine secretion in the hypothalamic paraventricular nucleus of rats during unlimited access to self-administered nicotine: an in vivo microdialysis study. J Neurosci 21:8979–8989PubMedGoogle Scholar
  45. Fu Y, Matta SG, Kane VB, Sharp BM (2003) Norepinephrine release in amygdala of rats during chronic nicotine self-administration: an in vivo microdialysis study. Neuropharmacology 45:514–523PubMedCrossRefGoogle Scholar
  46. Fucile S (2004) Ca2+ permeability of nicotinic acetylcholine receptors. Cell Calcium 35:1–8PubMedCrossRefGoogle Scholar
  47. Gaddnas H, Pietila K, Ahtee L (2000) Effects of chronic oral nicotine treatment and its withdrawal on locomotor activity and brain monoamines in mice. Behav Brain Res 113:65–72PubMedCrossRefGoogle Scholar
  48. Geisler S, Derst C, Veh RW, Zahm DS (2007) Glutamatergic afferents of the ventral tegmental area in the rat. J Neurosci 27:5730–5743PubMedCrossRefGoogle Scholar
  49. Gentry CL, Lukas RJ (2002) Regulation of nicotinic acetylcholine receptor numbers and function by chronic nicotine exposure. Curr Drug Targets CNS Neurol Disord 1:359–385PubMedCrossRefGoogle Scholar
  50. Gerzanich V, Wang F, Kuryatov A, Lindstrom J (1998) Alpha 5 subunit alters desensitization, pharmacology, Ca++ permeability and Ca++ modulation of human neuronal alpha 3 nicotinic receptors. J Pharmacol Exp Ther 286:311–320PubMedGoogle Scholar
  51. Girault JA, Valjent E, Caboche J, Hervé D (2007) ERK2: a logical AND gate critical for drug-induced plasticity? Curr Opin Pharmacol 7:77–85PubMedCrossRefGoogle Scholar
  52. Gopalakrishnan M, Molinari EJ, Sullivan JP (1997) Regulation of human alpha4beta2 neuronal nicotinic acetylcholine receptors by cholinergic channel ligands and second messenger pathways. Mol Pharmacol 52:524–534PubMedGoogle Scholar
  53. Goto Y, Otani S, Grace AA (2007) The Yin and Yang of dopamine release: a new perspective. Neuropharmacology 53:583–587PubMedCrossRefGoogle Scholar
  54. Gotti C, Moretti M, Clementi F, Riganti L, McIntosh JM, Collins AC, Marks MJ, Whiteaker P (2005) Expression of nigrostriatal alpha 6-containing nicotinic acetylcholine receptors is selectively reduced, but not eliminated, by beta 3 subunit gene deletion. Mol Pharmacol 67:2007–2015PubMedCrossRefGoogle Scholar
  55. Gotti C, Zoli M, Clementi F (2006) Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 27:482–491PubMedCrossRefGoogle Scholar
  56. Gourlay SG, Benowitz NL (1997) Arteriovenous differences in plasma concentration of nicotine and catecholamines and related cardiovascular effects after smoking, nicotine nasal spray, and intravenous nicotine. Clin Pharmacol Ther 62:453–463PubMedCrossRefGoogle Scholar
  57. Grady SR, Grun EU, Marks MJ, Collins AC (1997) Pharmacological comparison of transient and persistent [3H]dopamine release from mouse striatal synaptosomes and response to chronic l-nicotine treatment. J Pharmacol Exp Ther 282:32–43PubMedGoogle Scholar
  58. Grady SR, Meinerz NM, Cao J, Reynolds AM, Picciotto MR, Changeux JP, McIntosh JM, Marks MJ, Collins AC (2001) Nicotinic agonists stimulate acetylcholine release from mouse interpeduncular nucleus: a function mediated by a different nachr than dopamine release from striatum. J Neurochem 76:258–268PubMedCrossRefGoogle Scholar
  59. Grilli M, Parodi M, Raiteri M, Marchi M (2005) Chronic nicotine differentially affects the function of nicotinic receptor subtypes regulating neurotransmitter release. J Neurochem 93:1353–1360PubMedCrossRefGoogle Scholar
  60. Gueorguiev VD, Zeman RJ, Meyer EM, Sabban EL (2000) Involvement of alpha7 nicotinic acetyl-choline receptors in activation of tyrosine hydroxylase and dopamine beta-hydroxylase gene expression in PC12 cells. J Neurochem 75:1997–2005PubMedCrossRefGoogle Scholar
  61. Gueorguiev VD, Cheng SY, Sabban EL (2006) Prolonged activation of cAMP-response element-binding protein and ATF-2 needed for nicotine-triggered elevation of tyrosine hydroxylase gene transcription in PC12 cells. J Biol Chem 281:10188–10195PubMedCrossRefGoogle Scholar
  62. Heimer L, Alheid GF, Zaborszky L (1985) Basal ganglia. In:Paxinos G (ed) The rat nervous system, vol 1. Academic, London, pp 37–87Google Scholar
  63. Hope BT, Nye HE, Kelz MB, Self DW, Iadarola MJ, Nakabeppu Y, Duman RS, Nestler EJ (1994) Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments. Neuron 13:1235–1244PubMedCrossRefGoogle Scholar
  64. Hu M, Liu QS, Chang KT, Berg DK (2002) Nicotinic regulation of CREB activation in hippocam-pal neurons by glutamatergic and nonglutamatergic pathways. Mol Cell Neurosci 21:616–625PubMedCrossRefGoogle Scholar
  65. Hukkanen J, Jacob P, III, Benowitz NL (2005) Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57:79–115PubMedCrossRefGoogle Scholar
  66. Hyman SE, Malenka RC (2001) Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2:695–703PubMedCrossRefGoogle Scholar
  67. Jacobs I, Anderson DJ, Surowy CS, Puttfarcken PS (2002) differential regulation of nicotinic receptor-mediated neurotransmitter release following chronic (-)-nicotine administration. Neu-ropharmacology 43:847–856Google Scholar
  68. Jones IW, Bolam JP, Wonnacott S (2001) Presynaptic localisation of the nicotinic acetylcholine receptor beta2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones. J Comp Neurol 439:235–247PubMedCrossRefGoogle Scholar
  69. Jones IW, Wonnacott S (2004) Precise localization of alpha7 nicotinic acetylcholine receptors on glutamatergic axon terminals in the rat ventral tegmental area. J Neurosci 24:11244–11252PubMedCrossRefGoogle Scholar
  70. Kaiser S, Wonnacott S (2000) Alpha-bungarotoxin-sensitive nicotinic receptors indirectly modulate [3H]dopamine release in rat striatal slices via glutamate release. Mol Pharmacol 58: 312–318PubMedGoogle Scholar
  71. Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 3:102–114PubMedCrossRefGoogle Scholar
  72. Kauer JA, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 8:844–858PubMedCrossRefGoogle Scholar
  73. Kawai H, Berg DK (2001) Nicotinic acetylcholine receptors containing alpha7 subunits on rat cortical neurons do not undergo long-lasting inactivation even when up-regulated by chronic nicotine exposure. J Neurochem 78:1367–1378PubMedCrossRefGoogle Scholar
  74. Kedmi M, Orr-Urtreger A (2007) Differential brain transcriptome of beta4 nAChR subunit-deficient mice: is it the effect of the null mutation or the background strain? Physiol Genomics 28:213–222PubMedGoogle Scholar
  75. Kenny PJ, Markou A (2005) Conditioned nicotine withdrawal profoundly decreases the activity of brain reward systems. J Neurosci 25:6208–6212PubMedCrossRefGoogle Scholar
  76. Klink R, de Kerchove d A, Zoli M, Changeux JP (2001) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 21: 1452–1463PubMedGoogle Scholar
  77. Konu O, Kane JK, Barrett T, Vawter MP, Chang R, Ma JZ, Donovan DM, Sharp B, Becker KG, Li MD (2001) Region-specific transcriptional response to chronic nicotine in rat brain. Brain Res 909:194–203PubMedCrossRefGoogle Scholar
  78. Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13:177–184PubMedCrossRefGoogle Scholar
  79. Kumar A, Choi KH, Renthal W, Tsankova NM, Theobald DE, Truong HT, Russo SJ, Laplant Q, Sasaki TS, Whistler KN, Neve RL, Self DW, Nestler EJ (2005) Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48:303–314PubMedCrossRefGoogle Scholar
  80. Kuryatov A, Luo J, Cooper J, Lindstrom J (2005) Nicotine acts as a pharmacological chaperone to up-regulate human alpha4beta2 acetylcholine receptors. Mol Pharmacol 68:1839–1851PubMedGoogle Scholar
  81. Kuryatov A, Onksen J, Lindstrom JM (2008) Roles of Accessory Subunits in {alpha}4{beta}2* Nicotinic Receptors. Mol Pharmacol 74:132–143PubMedCrossRefGoogle Scholar
  82. Lai A, Parameswaran N, Khwaja M, Whiteaker P, Lindstrom JM, Fan H, McIntosh JM, Grady SR, Quik M (2005) Long-term nicotine treatment decreases striatal alpha 6* nicotinic acetylcholine receptor sites and function in mice. Mol Pharmacol 67:1639–1647PubMedCrossRefGoogle Scholar
  83. Lapchak PA, Araujo DM, Quirion R, Collier B (1989) Effect of chronic nicotine treatment on nicotinic autoreceptor function and N-[3H]methylcarbamylcholine binding sites in the rat brain. J Neurochem 52:483–491PubMedCrossRefGoogle Scholar
  84. Laviolette SR, van der Kooy D (2004) The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nat Rev Neurosci 5:55–65PubMedCrossRefGoogle Scholar
  85. Lee JL, Di Ciano P, Thomas KL, Everitt BJ (2005) Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron 47:795–801PubMedCrossRefGoogle Scholar
  86. Lena C, Changeux JP, Mulle C (1993) Evidence for “preterminal” nicotinic receptors on GABAer-gic axons in the rat interpeduncular nucleus. J Neurosci 13:2680–2688PubMedGoogle Scholar
  87. Li MD, Kane JK, Wang J, Ma JZ (2004) Time-dependent changes in transcriptional profiles within five rat brain regions in response to nicotine treatment. Brain Res Mol Brain Res 132:168–180PubMedCrossRefGoogle Scholar
  88. Lippiello PM, Sears SB, Fernandes KG (1987) Kinetics and mechanism of l-[3H]nicotine binding to putative high affinity receptor sites in rat brain. Mol Pharmacol 31:392–400PubMedGoogle Scholar
  89. Lu Y, Grady S, Marks MJ, Picciotto M, Changeux JP, Collins AC (1998) Pharmacological characterization of nicotinic receptor-stimulated GABA release from mouse brain synaptosomes. J Pharmacol Exp Ther 287:648–657PubMedGoogle Scholar
  90. Luetje CW, Patrick J (1991) Both alpha- and beta-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors. J Neurosci 11:837–845PubMedGoogle Scholar
  91. Mameli-Engvall M, Evrard A, Pons S, Maskos U, Svensson TH, Changeux JP, Faure P (2006) Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors. Neuron 50:911–921PubMedCrossRefGoogle Scholar
  92. Mansvelder HD, McGehee DS (2000) Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 27:349–357PubMedCrossRefGoogle Scholar
  93. Mansvelder HD, McGehee DS (2002) Cellular and synaptic mechanisms of nicotine addiction. J Neurobiol 53:606–617PubMedCrossRefGoogle Scholar
  94. Mansvelder HD, De Rover M, McGehee DS, Brussaard AB (2003) Cholinergic modulation of dopaminergic reward areas: upstream and downstream targets of nicotine addiction. Eur J Pharmacol 480:117–123PubMedCrossRefGoogle Scholar
  95. Mao D, Perry DC, Yasuda RP, Wolfe BB, Kellar KJ (2008) The alpha4beta2alpha5 nicotinic cholinergic receptor in rat brain is resistant to up-regulation by nicotine in vivo. J Neurochem 104:446–456PubMedGoogle Scholar
  96. Marchi M, Risso F, Viola C, Cavazzani P, Raiteri M (2002) Direct evidence that release-stimulating alpha7* nicotinic cholinergic receptors are localized on human and rat brain glutamatergic axon terminals. J Neurochem 80:1071–1078PubMedCrossRefGoogle Scholar
  97. Marks MJ, Burch JB, Collins AC (1983) Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. J Pharmacol Exp Ther 226:817–825PubMedGoogle Scholar
  98. Marks MJ, Grady SR, Collins AC (1993) Downregulation of nicotinic receptor function after chronic nicotine infusion. J Pharmacol Exp Ther 266:1268–1276PubMedGoogle Scholar
  99. Marshall DL, Redfern PH, Wonnacott S (1997) Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo microdialysis: comparison of naive and chronic nicotine-treated rats. J Neurochem 68:1511–1519PubMedGoogle Scholar
  100. Marubio LM, Gardier AM, Durier S, David D, Klink R, Arroyo-Jimenez MM, McIntosh JM, Rossi F, Champtiaux N, Zoli M, Changeux JP (2003) Effects of nicotine in the dopaminergic system of mice lacking the alpha4 subunit of neuronal nicotinic acetylcholine receptors. Eur J Neurosci 17:1329–1337PubMedCrossRefGoogle Scholar
  101. Maskos U, Molles BE, Pons S, Besson M, Guiard BP, Guilloux JP, Evrard A, Cazala P, Cormier A, Mameli-Engvall M, Dufour N, Cloez-Tayarani I, Bemelmans AP, Mallet J, Gardier AM, David V, Faure P, Granon S, Changeux JP (2005) Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature 436:103–107PubMedCrossRefGoogle Scholar
  102. Maskos U (2008) The cholinergic mesopontine tegmentum is a relatively neglected nicotinic master modulator of the dopaminergic system: relevance to drugs of abuse and pathology. Br J Pharmacol 153:S438–S445PubMedCrossRefGoogle Scholar
  103. Massey KA, Zago WM, Berg DK (2006) BDNF up-regulates alpha7 nicotinic acetylcholine receptor levels on subpopulations of hippocampal interneurons. Mol Cell Neurosci 33:381–388PubMedCrossRefGoogle Scholar
  104. Matta SG, Balfour DJ, Benowitz NL, Boyd RT, Buccafusco JJ, Caggiula AR, Craig CR, Collins AC, Damaj MI, Donny EC, Gardiner PS, Grady SR, Heberlein U, Leonard SS, Levin ED, Lukas RJ, Markou A, Marks MJ, McCallum SE, Parameswaran N, Perkins KA, Picciotto MR, Quik M, Rose JE, Rothenfluh A, Schafer WR, Stolerman IP, Tyndale RF, Wehner JM, Zirger JM (2007) Guidelines on nicotine dose selection for in vivo research. Psychopharmacology 190:269–319PubMedCrossRefGoogle Scholar
  105. McCallum SE, Parameswaran N, Bordia T, Fan H, McIntosh JM, Quik M (2006) Differential regulation of mesolimbic alpha 3/alpha 6 beta 2 and alpha 4 beta 2 nicotinic acetylcholine receptor sites, function after long-term oral nicotine to monkeys. J Pharmacol Exp Ther 318:381–388PubMedCrossRefGoogle Scholar
  106. McKay BE, Placzek AN, Dani JA (2007) Regulation of synaptic transmission and plasticity by neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 74:1120–1133PubMedCrossRefGoogle Scholar
  107. Mena-Segovia J, Winn P, Bolam JP (2008) Cholinergic modulation of midbrain dopaminergic systems. Brain Res Rev 58:265–271PubMedCrossRefGoogle Scholar
  108. Michael DJ, Wightman RM (1999) Electrochemical monitoring of biogenic amine neurotransmis-sion in real time. J Pharm Biomed Anal 9:33–46CrossRefGoogle Scholar
  109. Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–955PubMedCrossRefGoogle Scholar
  110. Mogg AJ, Jones FA, Pullar IA, Sharples CG, Wonnacott S (2004) Functional responses and subunit composition of presynaptic nicotinic receptor subtypes explored using the novel agonist 5-iodo-A-85380. Neuropharmacology 47:848–859PubMedCrossRefGoogle Scholar
  111. Molinari EJ, Delbono O, Messi ML, Renganathan M, Arneric SP, Sullivan JP, Gopalakrishnan M (1998) Up-regulation of human alpha7 nicotinic receptors by chronic treatment with activator and antagonist ligands. Eur J Pharmacol 347:131–139PubMedCrossRefGoogle Scholar
  112. Moroni M, Zwart R, Sher E, Cassels BK, Bermudez I (2006) alpha4beta2 nicotinic receptors with high and low acetylcholine sensitivity: pharmacology, stoichiometry, and sensitivity to long-term exposure to nicotine. Mol Pharmacol 70:755–768PubMedCrossRefGoogle Scholar
  113. Mugnaini M, Tessari M, Tarter G, Merlo Pich E, Chiamulera C, Bunnemann B (2002) “http://www.ncbi.nlm.nih.gov/pubmed/12431215?ordinalpos=4&itool=EntrezSystem2. PEntrez.Pub-med.Pubmed ResultsPanel.Pubmed DefaultReportPanel.Pubmed RVDocSum” Upregulation of [3H]methyllycaconitine binding sites following continuous infusion of nicotine, without changes of alpha7 or alpha6 subunit mRNA: an autoradiography and in situ hybridization study in rat brain. Eur J Neurosci 16:1633–1646.PubMedCrossRefGoogle Scholar
  114. Mugnaini M, Garzotti M, Sartori I, Pilla M, Repeto P, Heidbreder CA, Tessari M (2006) Selective down-regulation of [125I]y(0)-alpha-conotoxin MII binding in rat mesostriatal dopamine pathway following continuous infusion of nicotine. Neuroscience 137:565–572PubMedCrossRefGoogle Scholar
  115. Nakayama H, Numakawa T, Ikeuchi T, Hatanaka H (2001) Nicotine-induced phosphorylation of extracellular signal-regulated protein kinase and CREB in PC12h cells. J Neurochem 79:489–498PubMedCrossRefGoogle Scholar
  116. Nashmi R, Dickinson ME, McKinney S, Jareb M, Labarca C, Fraser SE, Lester HA (2003) Assembly of alpha4beta2 nicotinic acetylcholine receptors assessed with functional fluorescently labeled subunits: effects of localization, trafficking, and nicotine-induced upregulation in clonal mammalian cells and in cultured midbrain neurons. J Neurosci 23:11554–11567PubMedGoogle Scholar
  117. Nashmi R, Lester H (2007) Cell autonomy, receptor autonomy, and thermodynamics in nicotine receptor up-regulation. Biochem Pharmacol 74:1145–1154PubMedCrossRefGoogle Scholar
  118. Nayak SV, Dougherty JJ, McIntosh JM, Nichols RA (2001) Ca2+ changes induced by different presynaptic nicotinic receptors in separate populations of individual striatal nerve terminals. J Neurochem 76:1860–1870PubMedCrossRefGoogle Scholar
  119. Nelson ME, Kuryatov A, Choi CH, Zhou Y, Lindstrom J (2003) Alternate stoichiometries of alpha4beta2 nicotinic acetylcholine receptors. Mol Pharmacol 63:332–341PubMedCrossRefGoogle Scholar
  120. Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2:119–128PubMedCrossRefGoogle Scholar
  121. Nisell M, Nomikos GG, Svensson TH (1994) Infusion of nicotine in the ventral tegmental area or the nucleus accumbens of the rat differentially affects accumbal dopamine release. Pharmacol Toxicol 75:348–352PubMedGoogle Scholar
  122. Nisell M, Nomikos GG, Chergui K, Grillner P, Svensson TH (1997) Chronic nicotine enhances basal and nicotine-induced Fos immunoreactivity preferentially in the medial prefrontal cortex of the rat. Neuropsychopharmacology 17:151–161PubMedCrossRefGoogle Scholar
  123. Nuutinen S, Ekokoski E, Lahdensuo E, Tuominen RK (2006) “http://www.ncbi.nlm.nih. gov/pubmed/16846598?ordinalpos=2&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed Results Panel.Pubmed DefaultReportPanel.Pubmed RVDocSum” Nicotine-induced upregulation of human neuronal nicotinic alpha7-receptors is potentiated by modulation of cAMP and PKC in SH-EP1-halpha7 cells. Eur J Pharmacol 544:21–30.PubMedCrossRefGoogle Scholar
  124. Nuutinen S, Barik J, Jones IW, Wonnacott S (2007) Differential effects of acute and chronic nicotine on Elk-1 in rat hippocampus. Neuroreport 18:121–126PubMedCrossRefGoogle Scholar
  125. Olale F, Gerzanich V, Kuryatov A, Wang F, Lindstrom J (1997) Chronic nicotine exposure differentially affects the function of human alpha3, alpha4, and alpha7 neuronal nicotinic receptor subtypes. J Pharmacol Exp Ther 283:675–683PubMedGoogle Scholar
  126. Pagliusi SR, Tessari M, DeVevey S, Chiamulera C, Pich EM (1996) The reinforcing properties of nicotine are associated with a specific patterning of c-fos expression in the rat brain. Eur J Neurosci 8:2247–2256PubMedCrossRefGoogle Scholar
  127. Palma E, Bertrand S, Binzoni T, Bertrand D (1996) Neuronal nicotinic alpha 7 receptor expressed in Xenopus oocytes presents five putative binding sites for methyllycaconitine. J Phys-iol 491:151–161Google Scholar
  128. Panagis G, Nisell M, Nomikos GG, Chergui K, Svensson TH (1996) Nicotine injections into the ventral tegmental area increase locomotion and Fos-like immunoreactivity in the nucleus ac-cumbens of the rat. Brain Res. 730:133–142PubMedGoogle Scholar
  129. Papke RL, Jacobs LB, Stokes C (2007) Activation of alpha7 nAChR occurs with low fractional occupancy of the agonist binding sites. Soc Neurosci Abst 37:574.9Google Scholar
  130. Pauly JR, Marks MJ, Gross SD, Collins AC (1991) An autoradiographic analysis of cholinergic receptors in mouse brain after chronic nicotine treatment. J Pharmacol Exp Ther 258:1127–1136PubMedGoogle Scholar
  131. Peng X, Gerzanich V, Anand R, Whiting PJ, Lindstrom J (1994) Nicotine-induced increase in neu-ronal nicotinic receptors results from a decrease in the rate of receptor turnover. Mol Pharmacol 46:523–530PubMedGoogle Scholar
  132. Peters JA, Carland JE, Cooper MA, Livesey MR, Deeb TZ, Hales TG, Lambert JJ (2006) Novel structural determinants of single-channel conductance in nicotinic acetylcholine and 5-hydroxytryptamine type-3 receptors. Biochem Soc Trans 34(5):882–886PubMedCrossRefGoogle Scholar
  133. Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM, Fuxe K, Changeux JP (1998) Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–177PubMedCrossRefGoogle Scholar
  134. Pich EM, Pagliusi SR, Tessari M, Talabot-Ayer D, Hooft v H, Chiamulera C (1997) Common neural substrates for the addictive properties of nicotine and cocaine. Science 275:83–86PubMedCrossRefGoogle Scholar
  135. Pidoplichko VI, DeBiasi M, Williams JT, Dani JA (1997) Nicotine Activates and Desensitizes Midbrain Dopamine Neurons. Nature 390:401–404PubMedCrossRefGoogle Scholar
  136. Pietilä K, Ahtee L (2000) Chronic nicotine administration in the drinking water affects the striatal dopamine in mice. Pharmacol Biochem Behav 66:95–103PubMedCrossRefGoogle Scholar
  137. Puttfarcken PS, Jacobs I, Faltynek CR (2000) Characterization of nicotinic acetylcholine receptor-mediated [3H]-dopamine release from rat cortex and striatum. Neuropharmacology 39:2673–2680PubMedCrossRefGoogle Scholar
  138. Quik M, Parameswaran N, McCallum SE, Bordia T, Bao S, McCormack A, Kim A, Tyndale RF, Langston JW, Di Monte DA (2006) Chronic oral nicotine treatment protects against striatal degeneration in MPTP-treated primates. J Neurochem 98:1866–1875PubMedCrossRefGoogle Scholar
  139. Raiteri L, Raiteri M (2000) Synaptosomes still viable after 25 years of superfusion. Neurochem Res 25:1265–1274PubMedCrossRefGoogle Scholar
  140. Ramirez-Latorre J, Yu CR, Qu X, Perin F, Karlin A, Role L (1996) Functional contributions of alpha5 subunit to neuronal acetylcholine receptor channels. Nature 380:347–351PubMedCrossRefGoogle Scholar
  141. Rasmussen BA, Perry DC (2006) An autoradiographic analysis of [125I]alpha-bungarotoxin binding in rat brain after chronic nicotine exposure. Neurosci Lett 404:9–14PubMedCrossRefGoogle Scholar
  142. Reuben M, Clarke PB (2000) Nicotine-evoked [3H]5-hydroxytryptamine release from rat striatal synaptosomes. Neuropharmacology 39:290–299PubMedCrossRefGoogle Scholar
  143. Rezvani K, Teng Y, Shim D, De Biasi M (2007) Nicotine regulates multiple synaptic proteins by inhibiting proteasomal activity. J Neurosci 27:10508–10519PubMedCrossRefGoogle Scholar
  144. Ridley DL, Rogers A, Wonnacott S (2001) Differential effects of chronic drug treatment on alpha3*, alpha7 nicotinic receptor binding sites, in hippocampal neurones and sh-sy5y cells. Br J Pharmacol 133:1286–1295PubMedCrossRefGoogle Scholar
  145. Ridley DL, Pakkanen J, Wonnacott S (2002) Effects of chronic drug treatments on increases in intracellular calcium mediated by nicotinic acetylcholine receptors in SH-SY5Y cells. Br J Pharmacol 135:1051–1059PubMedCrossRefGoogle Scholar
  146. Robinson SF, Pauly JR, Marks MJ, Collins AC (1994) An analysis of response to nicotine infusion using an automated radiotelemetry system. Psychopharmacology 115:115–120PubMedCrossRefGoogle Scholar
  147. Role LW, Berg DK (1996) Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16:1077–1085PubMedCrossRefGoogle Scholar
  148. Rose JE, Behm FM, Westman EC, Coleman RE (1999) Arterial nicotine kinetics during cigarette smoking and intravenous nicotine administration: implications for addiction. Drug Alcohol Depend 56:99–107PubMedCrossRefGoogle Scholar
  149. Rousseau SJ, Jones IW, Pullar IA, Wonnacott S (2005) Presynaptic alpha7 and non-alpha7 nico-tinic acetylcholine receptors modulate [3H]d-aspartate release from rat frontal cortex in vitro. Neuropharmacology 49:59–72PubMedCrossRefGoogle Scholar
  150. Rowell PP, Li M (1997) Dose-response relationship for nicotine-induced up-regulation of rat brain nicotinic receptors. J Neurochem 68:1982–1989PubMedCrossRefGoogle Scholar
  151. Rowell PP, Hurst HE, Marlowe C, Bennett BD (1983) Oral administration of nicotine: its uptake and distribution after chronic administration to mice. J Pharmacol Methods 9:249–261PubMedCrossRefGoogle Scholar
  152. Russell MAH (1990) Nicotine intake and its control over smoking. In: Wonnacott S, Russell MAH, Stolerman IP (eds) Nicotine psychopharmacology, molecular, cellular and behavioural aspects. Oxford University Press, New York, pp 374–418Google Scholar
  153. Sakmann B (2006) Patch pipettes are more useful than initially thought: simultaneous pre- and postsynaptic recording from mammalian CNS synapses in vitro and in vivo. Pflugers Arch 453:249–259PubMedCrossRefGoogle Scholar
  154. Sallette J, Bohler S, Benoit P, Soudant M, Pons S, Le Novere N, Changeux JP, Corringer PJ (2004) An extracellular protein microdomain controls up-regulation of neuronal nicotinic acetyl-choline receptors by nicotine. J Biol Chem 279:18767–18775PubMedCrossRefGoogle Scholar
  155. Sallette J, Pons S, Devillers-Thiery A, Soudant M, Prado DC, Changeux JP, Corringer PJ (2005) Nicotine upregulates its own receptors through enhanced intracellular maturation. Neuron 46:595–607PubMedCrossRefGoogle Scholar
  156. Salminen O, Seppä T, Gäddnäs H, Ahtee L (1999) The effects of acute nicotine on the metabolism of dopamine and the expression of Fos protein in striatal and limbic brain areas of rats during chronic nicotine infusion and its withdrawal. J Neurosci 19:8145–8151PubMedGoogle Scholar
  157. Salminen O, Drapeau JA, McIntosh JM, Collins AC, Marks MJ, Grady SR (2007) Pharmacology of alpha-conotoxin MII-sensitive subtypes of nicotinic acetylcholine receptors isolated by breeding of null mutant mice. Mol Pharmacol 71:1563–1571PubMedCrossRefGoogle Scholar
  158. Sanderson EM, Drasdo AL, McCrea K, Wonnacott S (1993) Upregulation of nicotinic receptors following continuous infusion of nicotine is brain-region-specific. Brain Res 617:349–352PubMedCrossRefGoogle Scholar
  159. Saal D, Dong Y, Bonci A, Malenka RC (2003) Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37:577–582PubMedCrossRefGoogle Scholar
  160. Schilström B, Fagerquist MV, Zhang X, Hertel P, Panagis G, Nomikos GG, Svensson TH (2000) Putative role of presynaptic alpha7* nicotinic receptors in nicotine stimulated increases of extracellular levels of glutamate and aspartate in the ventral tegmental area. Synapse 38:375–383PubMedCrossRefGoogle Scholar
  161. Schilström B, Rawal N, Mameli-Engvall M, Nomikos GG, Svensson TH (2003) Dual effects of nicotine on dopamine neurons mediated by different nicotinic receptor subtypes. Int J Neu-ropsychopharmacol 6:1–11Google Scholar
  162. Schwartz RD, Kellar KJ (1983) Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science 220:214–216PubMedCrossRefGoogle Scholar
  163. Seguela P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993) Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13:596–604PubMedGoogle Scholar
  164. Sharma G, Vijayaraghavan S (2003) Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 38:929–939PubMedCrossRefGoogle Scholar
  165. Sharma G, Grybko M, Vijayaraghavan S (2008) Action potential-independent and nicotinic receptor-mediated concerted release of multiple quanta at hippocampal CA3-mossy fiber synapses. J Neurosci 28:2563–2575PubMedCrossRefGoogle Scholar
  166. Shoaib M, Stolerman IP (1999) Plasma nicotine and cotinine levels following intravenous nicotine self-administration in rats. Psychopharmacology 143:318–321PubMedCrossRefGoogle Scholar
  167. Shram MJ, Funk D, Li Z, Lê AD (2007) Acute nicotine enhances c-fos mRNA expression differentially in reward-related substrates of adolescent and adult rat brain. Neurosci Lett 418:286–291PubMedCrossRefGoogle Scholar
  168. Smit AB, Syed NI, Schaap D, van Minnen J, Klumperman J, Kits KS, Lodder H, van der Schors RC, van Elk R, Sorgedrager B, Brejc K, Sixma TK, Geraerts WP (2001) A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature 411:261–268PubMedCrossRefGoogle Scholar
  169. Soderstrom K, Qin W, Williams H, Taylor DA, McMillen BA (2007) Nicotine increases FosB expression within a subset of reward- and memory-related brain regions during both peri- and post-adolescence. Psychopharmacology 191:891–897PubMedCrossRefGoogle Scholar
  170. Sokolova E, Matteoni C, Nistri A (2005) Desensitization of neuronal nicotinic receptors of human neuroblastoma sh-sy5y cells during short or long exposure to nicotine. Br J Pharmacol 146:1087–1095PubMedCrossRefGoogle Scholar
  171. Soliakov L, Gallagher T, Wonnacott S (1995) Anatoxin-a-evoked [3H]dopamine release from rat striatal synaptosomes. Neuropharmacology 34:1535–1541PubMedCrossRefGoogle Scholar
  172. Soliakov L, Wonnacott S (1996) Voltage-sensitive Ca2+ channels involved in nicotinic receptor-mediated [3H]dopamine release from rat striatal synaptosomes. J Neurochem 67:163–170PubMedGoogle Scholar
  173. Sorge R, Clarke PB (2007) Slow/low intravenous infusions of nicotine in rats: a better model of smoking? Soc Neurosci Abst 37:273.17Google Scholar
  174. Staley JK, Krishnan-Sarin S, Cosgrove KP, Krantzler E, Frohlich E, Perry E, Dubin JA, Estok K, Brenner E, Baldwin RM, Tamagnan GD, Seibyl JP, Jatlow P, Picciotto MR, London ED, O'Malley S, van Dyck CH (2006) Human tobacco smokers in early abstinence have higher levels of beta2* nicotinic acetylcholine receptors than nonsmokers. J Neurosci 26:8707–8714PubMedCrossRefGoogle Scholar
  175. Steiner RC, Heath CJ, Picciotto MR (2007) Nicotine-induced phosphorylation of ERK in mouse primary cortical neurons: evidence for involvement of glutamatergic signaling and CaMKII. J Neurochem 103:666–678PubMedCrossRefGoogle Scholar
  176. Teaktong T, Graham AJ, Johnson M, Court JA, Perry EK (2004) Selective changes in nicotinic acetylcholine receptor subtypes related to tobacco smoking: an immunohistochemical study. Neuropathol Appl Neurobiol 30:243–254PubMedCrossRefGoogle Scholar
  177. Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8:355–367PubMedCrossRefGoogle Scholar
  178. Tsuneki H, Klink R, Léna C, Korn H, Changeux JP (2000) Calcium mobilization elicited by two types of nicotinic acetylcholine receptors in mouse substantia nigra pars compacta. Eur J Neu-rosci 12:2475–2485CrossRefGoogle Scholar
  179. Tumkosit P, Kuryatov A, Luo J, Lindstrom J (2006) Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines. Mol Pharmacol 70:1358–1368PubMedCrossRefGoogle Scholar
  180. Turner DM (1975) Influence of route of administration on metabolism of [14C]nicotine in four species. Xenobiotica 5:553–561PubMedCrossRefGoogle Scholar
  181. Turner TJ (2004) Nicotine enhancement of dopamine release by a calcium-dependent increase in the size of the readily releasable pool of synaptic vesicles. J Neurosci 24:11328–11336PubMedCrossRefGoogle Scholar
  182. Unwin N (1995) Acetylcholine receptor channel imaged in the open state. Nature 373:37–43PubMedCrossRefGoogle Scholar
  183. Unwin N (2003) Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy. FEBS Lett 555:91–95PubMedCrossRefGoogle Scholar
  184. Vadasz C, Saito M, O'Brien D, Zavadil J, Morahan G, Chakraborty G, Wang R (2007) Ventral tegmental transcriptome response to intermittent nicotine treatment and withdrawal in BALB/cJ, C57BL/6ByJ, and quasi-congenic RQI mice. Neurochem Res 32:457–480PubMedCrossRefGoogle Scholar
  185. Valjent E, Pagès C, Hervé D, Girault JA, Caboche J (2004) Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain. Eur J Neurosci 19:1826–1836PubMedCrossRefGoogle Scholar
  186. Valjent E, Aubier B, Corbillé AG, Brami-Cherrier K, Caboche J, Topilko P, Girault JA, Hervé D (2006) Plasticity-associated gene Krox24/Zif268 is required for long-lasting behavioral effects of cocaine. J Neurosci 26:4956–4960PubMedCrossRefGoogle Scholar
  187. Vallejo YF, Buisson B, Bertrand D, Green WN (2005) Chronic nicotine exposure upregulates nico-tinic receptors by a novel mechanism. J Neurosci 25:5563–5572PubMedCrossRefGoogle Scholar
  188. Vernino S, Amador M, Luetje CW, Patrick J, Dani JA (1992) Calcium modulation and high calcium permeability of neuronal nicotinic acetylcholine receptors. Neuron 8:127–134PubMedCrossRefGoogle Scholar
  189. Vizi ES, Lendvai B (1999) Modulatory role of presynaptic nicotinic receptors in synaptic and non-synaptic chemical communication in the central nervous system. Brain Res Brain Res Rev 30:219–235PubMedCrossRefGoogle Scholar
  190. Vorel SR, Liu X, Hayes RJ, Spector JA, Gardner EL (2001) Relapse to cocaine-seeking after hip-pocampal theta burst stimulation. Science 292:1175–1178PubMedCrossRefGoogle Scholar
  191. Wang J, Gutala R, Hwang YY, Kim JM, Konu O, Ma JZ, Li MD (2008) Strain- and region-specific gene expression profiles in mouse brain in response to chronic nicotine treatment. Genes Brain Behav 7:78–87PubMedGoogle Scholar
  192. Walsh H, Govind AP, Mastro R, Hoda JC, Bertrand D, Vallejo Y, Green WN (2008) Up-regulation of nicotinic receptors by nicotine varies with receptor subtype. J Biol Chem 283:6022–6032PubMedCrossRefGoogle Scholar
  193. Weinshenker D, Schroeder JP (2007) There and back again: a tale of norepinephrine and drug addiction. Neuropsychopharmacology 32:1433–1451PubMedCrossRefGoogle Scholar
  194. Westerink BH (2000) Analysis of biogenic amines in microdialysates of the brain. J Chromatogr B Biomed Sci Appl 747:21–32PubMedCrossRefGoogle Scholar
  195. Whiteaker P, Sharples CG, Wonnacott S (1998) Agonist-induced up-regulation of alpha4beta2 nicotinic acetylcholine receptors in M10 cells: pharmacological and spatial definition. Mol Pharmacol 53:950–962PubMedGoogle Scholar
  196. Wilkie GI, Hutson P, Sullivan JP, Wonnacott S (1996) Pharmacological characterization of a nico-tinic autoreceptor in rat hippocampal synaptosomes. Neurochem Res 21:1141–1148PubMedCrossRefGoogle Scholar
  197. Wilson GG, Karlin A (1998) The location of the gate in the acetylcholine receptor channel. Neuron 20:1269–1281PubMedCrossRefGoogle Scholar
  198. Wonnacott S (1990) The paradox of nicotinic acetylcholine receptor upregulation by nicotine. Trends Pharmacol Sci 11:216–219PubMedCrossRefGoogle Scholar
  199. Wonnacott S (1997) Presynaptic nicotinic ACh receptors. Trends Neurosci 20:92–98PubMedCrossRefGoogle Scholar
  200. Wonnacott S, Mogg A, Bradly A, Jones IW (2002) Presynaptic nicotinic acetylcholine receptors: subtypes mediating neurotransmitter release. In: Levin ED (ed) Nicotine and the nervous system. CRC, Boca Raton, pp 29–50Google Scholar
  201. Wonnacott S, Sidhpura N, Balfour DJ (2005) Nicotine: from molecular mechanisms to behaviour. Curr Opin Pharmacol 5:53–59PubMedCrossRefGoogle Scholar
  202. Xiao Y, Kellar KJ (2004) The comparative pharmacology and up-regulation of rat neuronal nico-tinic receptor subtype binding sites stably expressed in transfected mammalian cells. J Pharmacol Exp Ther 10:98–107CrossRefGoogle Scholar
  203. Yu ZJ, Wecker L (1994) Chronic nicotine administration differentially affects neurotransmitter release from rat striatal slices. J Neurochem 63:186–194PubMedGoogle Scholar
  204. Zanetti L, Picciotto MR, Zoli M (2007) Differential effects of nicotinic antagonists perfused into the nucleus accumbens or the ventral tegmental area on cocaine-induced dopamine release in the nucleus accumbens of mice. Psychopharmacology 190:189–199PubMedCrossRefGoogle Scholar
  205. Zhai H, Li Y, Wang X, Lu L (2008) Drug-induced alterations in the extracellular signal-regulated kinase (ERK) signalling pathway: implications for reinforcement and reinstatement. Cell Mol Neurobiol 28:157–172PubMedCrossRefGoogle Scholar
  206. Zhang J, Zhang L, Jiao H, Zhang Q, Zhang D, Lou D, Katz JL, Xu M (2006) c-Fos facilitates the acquisition and extinction of cocaine-induced persistent changes. J Neurosci 26:13287–13296PubMedCrossRefGoogle Scholar
  207. Zhou FM, Liang Y, Dani JA (2001) Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci 4:1224–1229PubMedCrossRefGoogle Scholar
  208. Zoli M, Moretti M, Zanardi A, McIntosh JM, Clementi F, Gotti C (2002) Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. J Neurosci 22:8785–8789PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jacques Barik
    • 1
  • Susan Wonnacott
    • 2
  1. 1.CNRS UMR7148, Génétique MoléculaireNeurophysiologie & Comportement Collège de FranceParis Cedex 05France
  2. 2.Department of Biology & BiochemistryUniversity of BathBathUK

Personalised recommendations