Quantum Transport within a Background Medium: Fluctuations versus Correlations

  • Holger Fehske
  • Andreas Alvermann
  • Gerhard Wellein

Abstract

We investigate transport within some background medium by means of an effective lattice model with a novel form of fermion-boson coupling. The bosons correspond to local fluctuations of the background. The model captures the principal transport mechanisms that apply to a great variety of physical systems, and can be applied, e.g. in the one-particle sector, to describe the motion of lattice and spin polarons, or the dynamics of a particle coupled to a bath. Performing large-scale numerical simulations on the HLRB-II at LRZ Munich, based on highly efficient variational Lanczos and Chebyshev moment expansion techniques, we analyse the newly proposed model by exactly calculating the single quasiparticle effective mass, ground-state dispersion and spectral function, as well as the Drude weight and the optical conductivity for an infinite one-dimensional system. Moreover, for the half-filled band case, we establish a metal-insulator quantum phase transition by analysing the particle-particle/boson correlations and photoemission spectra.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988) CrossRefGoogle Scholar
  2. 2.
    E. Dagotto, Rev. Mod. Phys. 66, 763 (1994) CrossRefGoogle Scholar
  3. 3.
    T. Holstein, Ann. Phys. (N.Y.) 8, 325 (1959) CrossRefGoogle Scholar
  4. 4.
    W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979) CrossRefGoogle Scholar
  5. 5.
    H. Fehske, M. Kinateder, G. Wellein, A.R. Bishop, Phys. Rev. B 63, 245121 (2001) CrossRefGoogle Scholar
  6. 6.
    D.M. Newns, C.-C. Tsuei, J. Phys. Conf. Ser. 92, 012007 (2007) CrossRefGoogle Scholar
  7. 7.
    L.G.L. Wegener, P.B. Littlewood, Phys. Rev. B 66, 224402 (2002) CrossRefGoogle Scholar
  8. 8.
    S. Komineas, G. Kalosakas, A.R. Bishop, Phys. Rev. E 65, 061905 (2002) CrossRefGoogle Scholar
  9. 9.
    W.F. Brinkman, T.M. Rice, Phys. Rev. B 2 (1970) Google Scholar
  10. 10.
    C.L. Kane, P.A. Read, D. Newns, Phys. Rev. B 39, 6880 (1989) CrossRefGoogle Scholar
  11. 11.
    S.A. Trugman, Phys. Rev. B 37, 1597 (1988) CrossRefGoogle Scholar
  12. 12.
    G.D. Mahan, Many-Particle Physics (Kluwer Academic/Plenum, New York, 2000) Google Scholar
  13. 13.
    A.L. Chudnovskiy, Europhys. Lett. 69, 609 (2005) CrossRefMathSciNetGoogle Scholar
  14. 14.
    D.M. Edwards, Physica B 378–380, 133 (2006) CrossRefGoogle Scholar
  15. 15.
    A. Alvermann, D.M. Edwards, H. Fehske, Phys. Rev. Lett. 98, 056602 (2007) CrossRefGoogle Scholar
  16. 16.
    A. Weiße, G. Wellein, A. Alvermann, H. Fehske, Rev. Mod. Phys. 78, 275 (2006) CrossRefGoogle Scholar
  17. 17.
    E. Jeckelmann, H. Fehske, Riv. Nuovo Cimento 30, 259 (2007) Google Scholar
  18. 18.
    A. Weiße, H. Fehske, in Computational Many-Particle Physics, ed. by H. Fehske, R. Schneider, A. Weiße. Lecture Notes in Physics, vol. 739 (Springer, Berlin, 2008), pp. 529–577 CrossRefGoogle Scholar
  19. 19.
    G. Wellein, H. Fehske, Phys. Rev. B 58, 6208 (1998) CrossRefGoogle Scholar
  20. 20.
    H. Fehske, S.A. Trugman, in Polarons in Advanced Materials, ed. by A.S. Alexandrov (Springer, Dordrecht, 2007), pp. 393–461 CrossRefGoogle Scholar
  21. 21.
    J.R. Schrieffer, X.G. Wen, S.C. Zhang, Phys. Rev. Lett. 60, 944 (1988) CrossRefGoogle Scholar
  22. 22.
    G. Grüner (ed.), Density Waves in Solids (Perseus, Cambridge, 1994) Google Scholar
  23. 23.
    R. Peierls, Quantum Theory of Solids (Oxford University Press, Oxford, 1955) MATHGoogle Scholar
  24. 24.
    H. Fehske, G. Wellein, G. Hager, A. Weiße, A.R. Bishop, Phys. Rev. B 69, 165115 (2004) CrossRefGoogle Scholar
  25. 25.
    M. Hohenadler, G. Wellein, A.R. Bishop, A. Alvermann, H. Fehske, Phys. Rev. B 73, 245120 (2006) CrossRefGoogle Scholar
  26. 26.
    H. Fehske, E. Jeckelmann, in Polarons in Bulk Materials and Systems with Reduced Dimensionality, ed. by G. Iadonisi, J. Ranninger, G. De Filippis. International School of Physics Enrico Fermi, vol. 161 (IOS, Amsterdam, 2006), pp. 297–311 Google Scholar
  27. 27.
    G. Wellein, H. Fehske, A. Alvermann, D.M. Edwards, arXiv:0802.0991
  28. 28.
    G. Wellein, H. Röder, H. Fehske, Phys. Rev. B 53, 9666 (1996) CrossRefGoogle Scholar
  29. 29.
    J. Bonča, S.A. Trugman, I. Batistić, Phys. Rev. B 60, 1633 (1999) CrossRefGoogle Scholar
  30. 30.
    J.K. Cullum, R.A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computations. Progress in Scientific Computing, vols. I–II (Birkhäuser, Boston, 1985) MATHGoogle Scholar
  31. 31.
    E.R. Davidson, J. Comput. Phys. 17, 87 (1975) CrossRefGoogle Scholar
  32. 32.
    R.N. Silver, H. Röder, Phys. Rev. E 56, 4822 (1997) CrossRefGoogle Scholar
  33. 33.
  34. 34.
    S. Yamada, T. Imamura, M. Machida, in SC2005 Conference on High Performance Networking and Computing (IEEE Computer Society, Los Alamitos, 2005), p. 44 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Holger Fehske
    • 1
  • Andreas Alvermann
    • 1
  • Gerhard Wellein
    • 2
  1. 1.Ernst-Moritz-Arndt-Universität Greifswald, Institut für PhysikGreifswaldGermany
  2. 2.Regionales Rechenzentrum ErlangenErlangenGermany

Personalised recommendations