Redox Catalysis and Reactivity of Metalloporphyrines

Conference paper

Abstract

Ab initio and density-functional theory (DFT) calculations on the Cu(II)-catalyzed rearrangement of quadricyclane to norbornadiene suggest that reaction proceeds via electron-transfer from the surface/CuSO4 to the hydrocarbon.

The mechanisms of direct porphyrin metalation was investigated using density functional theory (DFT) calculations for the gas-phase reactions of the unsubstituted porphyrin with the metals Fe, Co, Ni, Cu and Zn. The related reaction of tetraphenylporphyrin with bare metal atoms (Co and Zn) was studied with X-ray photoelectron spectroscopy, scanning tunneling microscopy, and temperature-programmed reaction measurements on ordered monolayer films of the molecules adsorbed on a Ag(111) surface. DFT calculations suggest that metalations with Fe, Co and Ni show two-state reactivity, while those with Cu and Zn proceed on a single potential energy surface. For metalation with Zn, we calculated a barrier of the first hydrogen transfer step of 32.6 kcal mol−1, in a good agreement with the overall experimental activation energy of 31 kcal mol−1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558–561 (1993) CrossRefGoogle Scholar
  2. 2.
    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251–14269 (1994) CrossRefGoogle Scholar
  3. 3.
    G. Kresse, J. Hafner, Comput. Mater. Sci. 6, 15 (1996) CrossRefGoogle Scholar
  4. 4.
    G. Wilder, M. Giester, Min. Petrol. 39, 201 (1998) CrossRefGoogle Scholar
  5. 5.
    S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200–1211 (1980) CrossRefGoogle Scholar
  6. 6.
    J.P. Perdew, J. A Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671–6687 (1992) CrossRefGoogle Scholar
  7. 7.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1995) CrossRefGoogle Scholar
  8. 8.
    G. Kresse, J. Joubert, Phys. Rev. B 59, 1758 (1999) CrossRefGoogle Scholar
  9. 9.
    M.C. Payne, M.P. Teter, D.C. Allen, T.C. Allen, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045–1097 (1992) CrossRefGoogle Scholar
  10. 10.
    A.D. Becke, in The Challenge of d- and f-electrons: Theory and Computation, ed. by D.R. Salahub, M.C. Zerner (American Chemical Society, Washington, 1989), pp. 165–179 Google Scholar
  11. 11.
    A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993) CrossRefGoogle Scholar
  12. 12.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. 37, 785 (1988) CrossRefGoogle Scholar
  13. 13.
    R. Ditchfield, W.J. Hehre, J.A. Pople, L. Radom, Chem. Phys. Lett. 5(1), 13–14 (1970) CrossRefGoogle Scholar
  14. 14.
    W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56, 2257 (1972) CrossRefGoogle Scholar
  15. 15.
    P.C. Hariharan, J.A. Pople, Theor. Chim. Acta 28, 213 (1973) CrossRefGoogle Scholar
  16. 16.
    J.-P. Blaudeau, M.P. McGrath, L.A. Curtiss, L. Radom, J. Chem. Phys. 107, 5016 (1997) CrossRefGoogle Scholar
  17. 17.
    M.M. Francl, W.J. Pietro, W.J. Hehre, J.S. Binkley, D.J. DeFrees, J.A. Pople, M.S. Gordon, J. Chem. Phys. 77, 3654 (1982) CrossRefGoogle Scholar
  18. 18.
    M.J. Frisch, J.A. Pople, J.S. Binkley, J. Chem. Phys. 80, 3265 (1984) CrossRefGoogle Scholar
  19. 19.
    V.A. Rassolov, J.A. Pople, M.A. Ratner, T.L. Windus, J. Chem. Phys. 109, 1223 (1998) CrossRefGoogle Scholar
  20. 20.
    V.A. Rassolov, M.A. Ratner, J.A. Pople, P.C. Redfern, L.A. Curtiss, J. Comput. Chem. 22, 976 (2001) CrossRefGoogle Scholar
  21. 21.
    P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 299 (1985) CrossRefGoogle Scholar
  22. 22.
    P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985) CrossRefGoogle Scholar
  23. 23.
    W.R. Wadt, P.J. Hay, J. Chem. Phys. 82, 284 (1985) CrossRefGoogle Scholar
  24. 24.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, in Gaussian 03, revision d.0.2 (Gaussian, Inc., Wallingford, 2004) Google Scholar
  25. 25.
    M. Reiher, O. Salomon, B.A. Hess, Theor. Chem. Acc. 107(1), 48–55 (2001) Google Scholar
  26. 26.
    C. Møller, M.S. Plesset, Phys. Rev. 98, 5648 (1934) Google Scholar
  27. 27.
    J.A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys. 87, 5968 (1987) CrossRefGoogle Scholar
  28. 28.
    H. Hogeveen, H.C. Volger, J. Am. Chem. Soc. 89, 2486 (1967) CrossRefGoogle Scholar
  29. 29.
    A. Sen, R.R. Thomas, Organometallics 1, 1251 (1982) CrossRefGoogle Scholar
  30. 30.
    L. Cassar, J. Halpern, Chem. Commun. 17, 1082 (1970) Google Scholar
  31. 31.
    G.F. Koser, P.R. Pappas, S.-M. Yu, Tet. Lett. 49, 4943 (1973) CrossRefGoogle Scholar
  32. 32.
    B.C. Menon, R.E. Pincock, Can. J. Chem. 47, 3327 (1969) CrossRefGoogle Scholar
  33. 33.
    S. Moss, B.T. King, A. de Meijere, S.I. Kozhushkov, P.-E. Eaton, J. Michl, Org. Lett. 3, 2375 (2001) CrossRefGoogle Scholar
  34. 34.
    R.A. Stearns, P.R. Ortiz de Montellano, J. Am. Chem. Soc. 107, 4081 (1985) CrossRefGoogle Scholar
  35. 35.
    E.S. Kirkor, V.M. Maloney, J. Michl, J. Am. Chem. Soc. 112, 148 (1990) CrossRefGoogle Scholar
  36. 36.
    S.J. Goede, L. de Vries, F. Bickelhaupt, Bull. Soc. Chim. Fr. 130, 185 (1993) Google Scholar
  37. 37.
    P. Bischof, J. Am. Chem. Soc. 99, 8145 (1977) CrossRefGoogle Scholar
  38. 38.
    J.M. Gottfried, K. Flechtner, A. Kretschmann, T. Lukasczyk, H.-P. Steinrück, J. Am. Chem. Soc. 128, 5644 (2006) CrossRefGoogle Scholar
  39. 39.
    W. Auwärter, A. Weber-Bargioni, S. Brink, A. Riemann, A. Schiffrin, M. Ruben, J.V. Barth, Chem. Phys. Chem. 8, 250–254 (2007) Google Scholar
  40. 40.
    F. Buchner, V. Schwald, K. Comanici, H.-P. Steinrück, H. Marbach, Chem. Phys. Chem. 8, 241–243 (2007) Google Scholar
  41. 41.
    Y. Shen, U. Ryde, J. Inorg. Biochem. 98, 878–895 (2004) CrossRefGoogle Scholar
  42. 42.
    Y. Shen, U. Ryde, Chem. A: Eur. J. 11, 1549–1564 (2005) CrossRefGoogle Scholar
  43. 43.
    Y.W. Hsiao, U. Ryde, Inorg. Chim. Acta 359, 1081 (2006) CrossRefGoogle Scholar
  44. 44.
    M.-S. Liao, S. Scheiner, J. Chem. Phys. 117(1), 205–219 (2002) CrossRefGoogle Scholar
  45. 45.
    M.-S. Liao, J.D. Watts, M.-J. Huang, J. Phys. Chem. A 109, 7988–8000 (2005) CrossRefGoogle Scholar
  46. 46.
    M.-S. Liao, J.D. Watts, M.-J. Huang, J. Comp. Chem. 27, 1577–1592 (2006) MATHCrossRefGoogle Scholar
  47. 47.
    Y.-K. Choe, T. Nakajima, K. Hirao, R. Lindh, J. Chem. Phys. 111(9), 3837–3845 (1999) CrossRefGoogle Scholar
  48. 48.
    P.M. Kozlowski, T.G. Spiro, A. Berces, M.Z. Zgierski, J. Phys. Chem. B 102, 2603–2608 (1998) CrossRefGoogle Scholar
  49. 49.
    C. Rovira, K. Kunc, J. Hutter, M. Parrinello, Inorg. Chem. 40, 11–17 (2001) CrossRefGoogle Scholar
  50. 50.
    D. Schroeder, S. Shaik, H. Schwarz, Acc. Chem. Res. 33, 139 (2000) CrossRefGoogle Scholar
  51. 51.
    S. Shaik, D. Danovich, A. Fiedler, D. Schroeder, H. Schwarz, Helv. Chim. Acta 78(6), 1393–1407 (1995) CrossRefGoogle Scholar
  52. 52.
    E.B. Fleischer, J.H. Wang, J. Am. Chem. Soc. 82, 3498 (1960) CrossRefGoogle Scholar
  53. 53.
    T.E. Shubina, H. Marbach, K. Flechtner, A. Kretschmann, N. Jux, F. Buchner, H.-P. Steinruck, T. Clark, J.M. Gottfried, J. Am. Chem. Soc. 129, 9479–9483 (2007) CrossRefGoogle Scholar
  54. 54.
    L. Hannibal, C.A. Smith, D.W. Jacobsen, N.E. Brasch, Angew. Chem. Int. Ed. 46, 5140–5143 (2007) CrossRefGoogle Scholar
  55. 55.
    C. Selçuki, R. van Eldik, T. Clark, Inorg. Chem. (2004) Google Scholar
  56. 56.
    F. Roncaroli, T.E. Shubina, T. Clark, R. van Eldik, Inorg. Chem. 45(19), 7869–76 (2006) CrossRefGoogle Scholar
  57. 57.
    C. Rovira, X. Biarnes, K. Kunc, Inorg. Chem. 43, 6628–6632 (2004) CrossRefGoogle Scholar
  58. 58.
    C. Rovira, P.M. Kozlowski, J. Phys. Chem. B 111, 3251–3257 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Computer-Chemie-Centrum der Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations