Investigating Protein-Protein and Protein-Ligand Interactions by Molecular Dynamics Simulations

  • Florian Haberl
  • Olaf Othersen
  • Ute Seidel
  • Harald Lanig
  • Tim Clark
Conference paper


In recent years, the earlier view of proteins as relatively rigid structures has been replaced by a dynamic model in which the internal motions and resulting conformational changes play an essential role in their function. In this context, molecular dynamics (MD) simulations have become an important computational tool for understanding the physical basis of the structure and function of biological macromolecules. Also in the process of finding new drugs MD simulations play an important role. Our workgroup uses molecular dynamics simulations to study proteins of biological and medical relevance, e.g. signal transduction proteins or human integrin complexes. The general aim of these investigations is to find possible new lead structures or drugs and also to understand the basic and essential mechanisms behind the mode of action of our target systems. In MD simulation, the problem size is fixed and a large number of iterations must be executed, so the MD simulation suites have to scale to hundreds or thousands CPUs to get detailed view inside biomolecular systems. The used programs AMBER and GROMACS scale well up to 64 or 32 CPUs, respectively. A typical run for about 100 ns simulation time consumes 5500 up to 21000 CPU hours.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.J. Alder, T.E. Wainwright, Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209 (1957) CrossRefGoogle Scholar
  2. 2.
    M. Levitt, The birth of computational structural biology. Nat. Struct. Biol. 8, 392–393 (2001) CrossRefGoogle Scholar
  3. 3.
    J.A. McCammon, B.R. Gelin, M. Karplus, Dynamics of folded proteins. Nature 267(5612), 585–590 (1977) CrossRefGoogle Scholar
  4. 4.
    J.P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 23(3), 327–341 (1977) CrossRefGoogle Scholar
  5. 5.
    W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926 (1983) CrossRefGoogle Scholar
  6. 6.
    W. Wang, O. Donini, C.M. Reyes, P.A. Kollman, Biomolecular simulations: Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu. Rev. Biophys. Biomol. Struct. 30(1), 211–243 (2001) CrossRefGoogle Scholar
  7. 7.
    R.W. Hockney, J.W. Eastwood, Computer simulation using particles (1988) Google Scholar
  8. 8.
    T. Darden, D. York, L. Pedersen, Particle mesh Ewald: An Nlog (N) method for Ewald sums in large systems. J. Chem. Phys. 98(12), 10089–10092 (1993) CrossRefGoogle Scholar
  9. 9.
    S.M. Larson, C.D. Snow, M. Shirts, V.S. Pande, Folding@home and genome@home: Using distributed computing to tackle previously intractable problems in computational biology. Comput. Genomics (2002) Google Scholar
  10. 10.
    K.J. Bowers, E. Chow, H. Xu, R.O. Dror, M.P. Eastwood, B.A. Gregersen, J.L. Klepeis, I. Kolossvary, M.A. Moraes, F.D. Sacerdoti et al., Molecular dynamics—scalable algorithms for molecular dynamics simulations on commodity clusters, in Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (2006) Google Scholar
  11. 11.
    D.E. Shaw, M.M. Deneroff, R.O. Dror, J.S. Kuskin, R.H. Larson, J.K. Salmon, C. Young, B. Batson, K.J. Bowers, J.C. Chao et al., Anton, a special-purpose machine for molecular dynamics simulation, in Proceedings of the 34th Annual International Conference on Computer Architecture (2007), pp. 1–12 Google Scholar
  12. 12.
    V. Daggett, Long timescale simulations. Curr. Opin. Struct. Biol. 10(2), 160 (2000) CrossRefGoogle Scholar
  13. 13.
    T. Hansson, C. Oostenbrink, W.F. van Gunsteren, Molecular dynamics simulations. Curr. Opin. Struct. Biol. 12(2), 190–196 (2002) CrossRefGoogle Scholar
  14. 14.
    K.R. Jerome, The road to new antiviral therapies. Clin. Appl. Immunol. Rev. 5(1), 65–76 (2005) CrossRefGoogle Scholar
  15. 15.
    Y. Chong, K. Borroto-Esoda, P.A. Furman, R.F. Schinazi, C.K. Chu, Molecular mechanism of DAPD/DXG against zidovudine- and lamivudine-drug resistant mutants: A molecular modeling approach. Antivir. Chem. Chemother. 13(2), 115–128 (2002) Google Scholar
  16. 16.
    E. De Clercq, Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov. 1(1), 13–25 (2002) CrossRefGoogle Scholar
  17. 17.
    S.A. Adcock, J.A. McCammon, Molecular dynamics: Survey of methods for simulating the activity of proteins. Chem. Rev. 106, 1589–1615 (2006) CrossRefGoogle Scholar
  18. 18.
    P.V. Coveney, P.W. Fowler, Review: Modelling biological complexity: a physical scientist’s perspective. J. R. Soc. Interface 2(4), 267–280 (2005) CrossRefGoogle Scholar
  19. 19.
    J.W. Ponder, D.A. Case, Force fields for protein simulations. Adv. Protein Chem. 66, 27–85 (2003) CrossRefGoogle Scholar
  20. 20.
    Z.X. Wang, W. Zhang, C. Wu, H. Lei, P. Cieplak, Y. Duan, Strike a balance: Optimization of backbone torsion parameters of AMBER polarizable force field for simulations of proteins and peptides. J. Comput. Chem. 27(6), 781–790 (2006) CrossRefGoogle Scholar
  21. 21.
    B. Ma, J.H. Lii, H.F. Schaefer III, N.L. Allinger, Systematic comparison of experimental, quantum mechanical, and molecular mechanical bond lengths for organic molecules. J. Phys. Chem. 100, 8763–8769 (1996) CrossRefGoogle Scholar
  22. 22.
    U. Burkert, N.L. Allinger et al., Molecular mechanics (1982) Google Scholar
  23. 23.
    D.A. Case, T. Darden, T.E. Cheatham III, C. Simmerling, J. Wang, R.E. Duke, R. Luo, K.M. Merz, D.A. Pearlman, M. Crowley et al., in AMBER 9 (University of California, San Francisco, 2006) Google Scholar
  24. 24.
    T.E. Cheatham III, M.A. Young, Molecular dynamics simulation of nucleic acids: Successes, limitations, and promise. Biopolymers (Nucl. Acid Sci.) 56, 232–256 (2001) CrossRefGoogle Scholar
  25. 25.
    D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, GRO-MACS: Fast, flexible, and free. J. Comput. Chem. 26(16), 1701–1718 (2005) CrossRefGoogle Scholar
  26. 26.
    H. Lanig, O.G. Othersen, F.R. Beierlein, U. Seidel, T. Clark, Molecular dynamics simulations of the tetracycline-repressor protein: The mechanism of induction. J. Mol. Biol. 359(4), 1125–1136 (2006) CrossRefGoogle Scholar
  27. 27.
    K. Postle, T.T. Nguyen, K.P. Bertrand, Nucleotide sequence of the represser gene of the Tn 10 tetracycline resistance determinant. Nucl. Acids Res. 12(12), 4849–4863 (1984) CrossRefGoogle Scholar
  28. 28.
    S.B. Levy, Resistance of minicells to penicillin lysis: A method of obtaining large quantities of purified minicells. J. Bacteriol. 103(3), 836–839 (1970) Google Scholar
  29. 29.
    W. Saenger, P. Orth, C. Kisker, W. Hillen, W. Hinrichs, The tetracycline represser a paradigm for a biological switch. Angew. Chem. Int. Ed. 39, 2042–2052 (2000) CrossRefGoogle Scholar
  30. 30.
    W. Hinrichs, C. Kisker, M. Duvel, A. Muller, K. Tovar, W. Hillen, W. Saenger, Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science 264(5157), 418 (1994) CrossRefGoogle Scholar
  31. 31.
    P. Orth, W. Saenger, W. Hinrichs, Tetracycline-chelated Mg 2 ion initiates helix unwinding in Tet represser induction. Biochemistry 38(1), 191–198 (1999) CrossRefGoogle Scholar
  32. 32.
    P. Orth, D. Schnappinger, W. Hillen, W. Saenger, W. Hinrichs, Structural basis of gene regulation by the tetracycline inducible Tet represser-operator system. Nat. Struct. Biol. 7, 215–219 (2000) CrossRefGoogle Scholar
  33. 33.
    M. Klotzsche, C. Berens, W. Hillen, A peptide triggers allostery in Tet represser by binding to a unique site. J. Biol. Chem. 280(26), 24591 (2005) CrossRefGoogle Scholar
  34. 34.
    S.R. Luckner, M. Klotzsche, C. Berens, W. Hillen, Y.A. Muller, How an agonist peptide mimics the antibiotic tetracycline to induce Tet-repressor. J. Mol. Biol. 368, 780–790 (2007) CrossRefGoogle Scholar
  35. 35.
    O. Scholz, E.M. Henssler, J. Bail, P. Schubert, J. Bogdanska-Urbaniak, S. Sopp, M. Reich, S. Wisshak, M. Kostner, R. Bertram et al., Activity reversal of Tet represser caused by single amino acid exchanges. Mol. Microbiol. 53(3), 777–789 (2004) CrossRefGoogle Scholar
  36. 36.
    H. von der Mark, E. Poschl, H. Lanig, T. Sasaki, R. Deutzman, K. von der Mark, Distinct acidic clusters and hydrophobic residues in the alternative splice domains X1 and X2 of α7 integrins define specificity for laminin isoforms. J. Mol. Biol. 371(5), 1188–1203 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Florian Haberl
    • 1
  • Olaf Othersen
    • 1
  • Ute Seidel
    • 1
  • Harald Lanig
    • 1
  • Tim Clark
    • 1
  1. 1.Computer-Chemie-Centrum der Friedrich-Alexander Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations