On the Urban Connectivity of Vehicular Sensor Networks

  • Hugo Conceição
  • Michel Ferreira
  • João Barros
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5067)

Abstract

Aiming at a realistic mobile connectivity model for vehicular sensor networks in urban environments, we propose the combination of large-scale traffic simulation and computational tools to characterize fundamental graph-theoretic parameters. To illustrate the proposed approach, we use the DIVERT simulation framework to illuminate the temporal evolution of the average node degree in this class of networks and provide an algorithm for computing the transitive connectivity profile that ultimately determines the flow of information in a vehicular sensor network.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grossglauser, M., Tse, D.: Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions on Networking (TON) 10(4), 477–486 (2002)CrossRefGoogle Scholar
  2. 2.
    Capkun, S., Hubaux, J., Buttyán, L.: Mobility helps security in ad hoc networks. In: Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing, pp. 46–56 (2003)Google Scholar
  3. 3.
    Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: A scalable and robust communication paradigm for sensor networks. In: Proceedings of the ACM/IEEE International Conference on Mobile Computing and Networking, pp. 56–67 (2000)Google Scholar
  4. 4.
    Kurkowski, S., Camp, T., Colagrosso, M.: MANET simulation studies: the incredibles. Mobile Computing and Communications Review 9(4), 50–61 (2005)CrossRefGoogle Scholar
  5. 5.
    Bettstetter, C.: Smooth is better than sharp: a random mobility model for simulation of wireless networks. In: Meo, M., Dahlberg, T.A., Donatiello, L. (eds.) MSWiM, pp. 19–27. ACM, New York (2001)CrossRefGoogle Scholar
  6. 6.
    Hong, D., Rappaport, S.S.: Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and non-prioritized handoff procedures. In: ICC, pp. 1146–1150 (1986)Google Scholar
  7. 7.
    Zonoozi, M.M., Dassanayake, P.: User mobility modeling and characterization of mobility patterns. IEEE Journal on Selected Areas in Communications 15(7), 1239–1252 (1997)CrossRefGoogle Scholar
  8. 8.
    Wilhelm, W.E., Schmidt, J.W.: Review of car following theory. Transportation Enginnering Journal 99, 923–933 (1973)Google Scholar
  9. 9.
    Hoogendoorn, S., Bovy, P.: State-of-the-art of vehicular traffic flow modelling. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 215(4), 283–303 (2001)CrossRefGoogle Scholar
  10. 10.
    Hoogendoorn, S., Bovy, P.: Gas-Kinetic Model for Multilane Heterogeneous Traffic Flow. Transportation Research Record 1678(-1), 150–159 (1999)CrossRefGoogle Scholar
  11. 11.
    Burghout, W., Koutsopoulos, H., Andréasson, I.: Hybrid Mesoscopic-Microscopic Traffic Simulation. Transportation Research Record 1934(-1), 218–255 (2005)CrossRefGoogle Scholar
  12. 12.
    Bar-Noy, A., Kessler, I., Sidi, M.: Mobile users: To update or not to update? Wireless Networks 1(2), 175–185 (1995)CrossRefGoogle Scholar
  13. 13.
    Bettstetter, C., Hartmann, C.: Connectivity of Wireless Multihop Networks in a Shadow Fading Environment. Wireless Networks 11(5), 571–579 (2005)CrossRefGoogle Scholar
  14. 14.
    Chiang, C., Wu, H., Liu, W., Gerla, M.: Routing in clustered multihop, mobile wireless networks with fading channel. Proceedings of IEEE SICON 97, 197–211 (1997)Google Scholar
  15. 15.
    Kotz, D., Newport, C., Gray, R.S., Liu, J., Yuan, Y., Elliott, C.: Experimental evaluation of wireless simulation assumptions. In: MSWiM 2004: Proceedings of the 7th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems, pp. 78–82. ACM, New York (2004)CrossRefGoogle Scholar
  16. 16.
    Conceição, H., Damas, L., Ferreira, M., Barros, J.: Large-Scale Simulation of V2V Environments. In: Proceedings of the 23rd Annual ACM Symposium on Applied Computing, SAC 2008, Fortaleza, Ceará, Brazil, March 2008. ACM Press, New York (2008)Google Scholar
  17. 17.
    Yamashita, T., Izumi, K., Kurumatani, K., Nakashima, H.: Smooth traffic flow with a cooperative car navigation system. In: AAMAS 2005: Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems, pp. 478–485. ACM, New York (2005)CrossRefGoogle Scholar
  18. 18.
    Piorkowski, M., Raya, M., Lugo, A., Papadimitratos, P., Grossglauser, M., Hubaux, J.P.: TraNS: Realistic Joint Traffic and Network Simulator for VANETs. ACM SIGMOBILE Mobile Computing and Communications ReviewGoogle Scholar
  19. 19.
    Wang, S., Chou, C., Huang, C., Hwang, C., Yang, Z., Chiou, C., Lin, C.: The design and implementation of the NCTUns 1.0 network simulator. Computer Networks 42(2), 175–197 (2003)MATHCrossRefGoogle Scholar
  20. 20.
    Mangharam, R., Weller, D., Rajkumar, R., Mudalige, P., Bai, F.: GrooveNet: A Hybrid Simulator for Vehicle-to-Vehicle Networks. In: Second International Workshop on Vehicle-to-Vehicle Communications (IEEE V2VCOM), San Jose, USA (July 2006)Google Scholar
  21. 21.
    Booth, L., Bruck, J., Franceschetti, M., Meester, R.: Covering Algorithms, Continuum Percolation and the Geometry of Wireless Networks. The Annals of Applied Probability 13(2), 722–741 (2003)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hugo Conceição
    • 1
    • 2
    • 3
  • Michel Ferreira
    • 1
    • 2
  • João Barros
    • 1
    • 3
    • 4
  1. 1.DCC 
  2. 2.LIACC 
  3. 3.Instituto de TelecomunicaçõesFaculdade de Ciências da Universidade do PortoPortugal
  4. 4.LIDSMITCambridgeUSA

Personalised recommendations