A Calculational Approach to Control-Flow Analysis by Abstract Interpretation

  • Jan Midtgaard
  • Thomas Jensen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5079)

Abstract

We present a derivation of a control-flow analysis by abstract interpretation. Our starting point is a transition system semantics defined as an abstract machine for a small functional language in continuation-passing style. We obtain a Galois connection for abstracting the machine states by composing Galois connections, most notable an independent-attribute Galois connection on machine states and a Galois connection induced by a closure operator associated with a constituent-parts relation on environments. We calculate abstract transfer functions by applying the state abstraction to the collecting semantics, resulting in a novel characterization of demand-driven 0-CFA.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appel, A.W.: Compiling with Continuations. Cambridge University Press, New York (1992)Google Scholar
  2. 2.
    Ayers, A.E.: Abstract Analysis and Optimization of Scheme. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts (September 1993)Google Scholar
  3. 3.
    Biswas, S.K.: A demand-driven set-based analysis. In: Jones (ed.) [17], pp. 372–385.Google Scholar
  4. 4.
    Bondorf, A.: Automatic autoprojection of higher-order recursive equations. Science of Computer Programming 17(1-3), 3–34 (1991)MATHCrossRefGoogle Scholar
  5. 5.
    Cousot, P.: Semantic foundations of program analysis. In: Muchnick, Jones (eds.) [24], ch. 10, pp. 303–342.Google Scholar
  6. 6.
    Cousot, P.: The calculational design of a generic abstract interpreter. In: Broy, M., Steinbrüggen, R. (eds.) Calculational System Design. NATO ASI Series F. IOS Press, Amsterdam (1999)Google Scholar
  7. 7.
    Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theoretical Computer Science 277(1–2), 47–103 (2002)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Sethi, R. (ed.) Proceedings of the Fourth Annual ACM Symposium on Principles of Programming Languages, Los Angeles, California, pp. 238–252 (January 1977)Google Scholar
  9. 9.
    Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Rosen, B.K. (ed.) Proceedings of the Sixth Annual ACM Symposium on Principles of Programming Languages, San Antonio, Texas, pp. 269–282 (January 1979)Google Scholar
  10. 10.
    Cousot, P., Cousot, R.: Abstract interpretation frameworks. Journal of Logic and Computation 2(4), 511–547 (1992)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Cousot, P., Cousot, R.: Higher-order abstract interpretation (and application to comportment analysis generalizing strictness, termination, projection and PER analysis of functional languages), invited paper. In: Bal, H. (ed.) Proceedings of the Fifth IEEE International Conference on Computer Languages, Toulouse, France, pp. 95–112 ( May 1994)Google Scholar
  12. 12.
    Danvy, O., Dzafic, B., Pfenning, F.: On proving syntactic properties of CPS programs. In: Third International Workshop on Higher-Order Operational Techniques in Semantics, Paris, France. Electronic Notes in Theoretical Computer Science, vol. 26, pp. 19–31 (September 1999)Google Scholar
  13. 13.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  14. 14.
    Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with continuations. In: Wall, D.W. (ed.) Proceedings of the ACM SIGPLAN 1993 Conference on Programming Languages Design and Implementation, Albuquerque, New Mexico, pp. 237–247 (June 1993)Google Scholar
  15. 15.
    Gasser, K.L.S., Nielson, F., Nielson, H.R.: Systematic realisation of control flow analyses for CML. In: Tofte, M. (ed.) Proceedings of the 1997 ACM SIGPLAN International Conference on Functional Programming, Amsterdam, The Netherlands, pp. 38–51 (June 1997)Google Scholar
  16. 16.
    Jones, N.D.: Flow analysis of lambda expressions (preliminary version). In: Proceedings of the 8th Colloquium on Automata, Languages and Programming, London, UK, pp. 114–128 (1981)Google Scholar
  17. 17.
    Jones, N.D. (ed.): Proceedings of the Twenty-Fourth Annual ACM Symposium on Principles of Programming Languages, Paris, France (January 1997)Google Scholar
  18. 18.
    Jones, N.D., Muchnick, S.S.: Complexity of flow analysis, inductive assertion synthesis and a language due to Dijkstra. In: Muchnick, Jones (eds.) [24], pp. 380–393.Google Scholar
  19. 19.
    Jones, N.D., Nielson, F.: Abstract interpretation: a semantics-based tool for program analysis. In: Handbook of logic in computer science, vol. 4, pp. 527–636. Oxford University Press, Oxford (1995)Google Scholar
  20. 20.
    Landin, P.J.: The mechanical evaluation of expressions. The Computer Journal 6(4), 308–320 (1964)MATHGoogle Scholar
  21. 21.
    Midtgaard, J.: Control-flow analysis of functional programs. Technical Report BRICS RS-07-18, DAIMI, Department of Computer Science, University of Aarhus, Aarhus, Denmark (December 2007)Google Scholar
  22. 22.
    Might, M., Shivers, O.: Improving flow analyses via ΓCFA: abstract garbage collection and counting. In: Lawall, J. (ed.) Proceedings of the Eleventh ACM SIGPLAN International Conference on Functional Programming (ICFP 2006), Portland, Oregon, pp. 13–25 (September 2006)Google Scholar
  23. 23.
    Milner, R., Tofte, M.: Co-induction in relational semantics. Theoretical Computer Science 87(1), 209–220 (1991)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Muchnick, S.S., Jones, N.D. (eds.): Program Flow Analysis: Theory and Applications. Prentice-Hall, Englewood Cliffs (1981)MATHGoogle Scholar
  25. 25.
    Nielson, F., Nielson, H.R.: Infinitary control flow analysis: a collecting semantics for closure analysis. In: Jones (ed.) [17], pp. 332–345Google Scholar
  26. 26.
    Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg (1999)MATHGoogle Scholar
  27. 27.
    Palsberg, J.: Closure analysis in constraint form. ACM Transactions on Programming Languages and Systems 17(1), 47–62 (1995)CrossRefGoogle Scholar
  28. 28.
    Sabry, A., Felleisen, M.: Is continuation-passing useful for data flow analysis? In: Sarkar, V. (ed.) Proceedings of the ACM SIGPLAN 1994 Conference on Programming Languages Design and Implementation, Orlando, Florida, pp. 1–12 (June 1994)Google Scholar
  29. 29.
    Schmidt, D.A.: Denotational Semantics: A Methodology for Language Development. Allyn and Bacon, Inc. (1986)Google Scholar
  30. 30.
    Sestoft, P.: Replacing function parameters by global variables. Master’s thesis, DIKU, Computer Science Department, University of Copenhagen, Copenhagen, Denmark (October 1988)Google Scholar
  31. 31.
    Shivers, O.: Control-flow analysis in Scheme. In: Schwartz, M.D. (ed.) Proceedings of the ACM SIGPLAN 1988 Conference on Programming Languages Design and Implementation, Atlanta, Georgia, pp. 164–174 (June 1988)Google Scholar
  32. 32.
    Shivers, O.: Control-Flow Analysis of Higher-Order Languages or Taming Lambda. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, Technical Report CMU-CS-91-145 (May 1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jan Midtgaard
    • 1
  • Thomas Jensen
    • 2
  1. 1.INRIA Rennes - Bretagne Atlantique 
  2. 2.CNRS IRISARennes CedexFrance

Personalised recommendations