Analysing All Polynomial Equations in \({\mathbb Z_{2^w}}\)

  • Helmut Seidl
  • Andrea Flexeder
  • Michael Petter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5079)

Abstract

In this paper, we present methods for checking and inferring all valid polynomial relations in \({\mathbb Z_{2^w}}\). In contrast to the infinite field ℚ, \({\mathbb Z_{2^w}}\) is finite and hence allows for finitely many polynomial functions only. In this paper we show, that checking the validity of a polynomial invariant over \({\mathbb Z_{2^w}}\) is, though decidable, only PSPACE-complete. Apart from the impracticable algorithm for the theoretical upper bound, we present a feasible algorithm for verifying polynomial invariants over \({\mathbb Z_{2^w}}\) which runs in polynomial time if the number of program variables is bounded by a constant. In this case, we also obtain a polynomial-time algorithm for inferring all polynomial relations. In general, our approach provides us with a feasible algorithm to infer all polynomial invariants up to a low degree.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becker, T., Weispfenning, V.: Gröbner Bases – a computational approach to commutative algebra. Springer, New York (1993)MATHGoogle Scholar
  2. 2.
    Colon, M.: Polynomial approximations of the relational semantics of imperative programs. Science of Computer Programming 64, 76–96 (2007)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Hungerbühler, N., Specker, E.: A generalization of the smarandache function to several variables. Integers: Electronic Journal Combinatorial Number Theory 6 (2006)Google Scholar
  4. 4.
    Karr, M.: Affine Relationships Among Variables of a Program. Acta Informatica 6, 133–151 (1976)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1989)MATHGoogle Scholar
  6. 6.
    Müller-Olm, M., Rüthing, O.: On the complexity of constant propagation. In: Sands, D. (ed.) ESOP 2001 and ETAPS 2001. LNCS, vol. 2028, Springer, Heidelberg (2001)Google Scholar
  7. 7.
    Müller-Olm, M., Seidl, H.: Polynomial Constants are Decidable. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 4–19. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Müller-Olm, M., Petter, M., Seidl, H.: Interprocedurally analyzing polynomial identities. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 50–67. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Müller-Olm, M., Seidl, H.: Computing Polynomial Program Invariants. Information Processing Letters (IPL) 91(5), 233–244 (2004)CrossRefGoogle Scholar
  10. 10.
    Müller-Olm, M., Seidl, H.: Analysis of modular arithmetic. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Müller-Olm, M., Seidl, H.: Analysis of modular arithmetic. ACM Transactions on Programming Languages and Systems (TOPLAS) 29(5) (2007)Google Scholar
  12. 12.
    Petter, M.: Berechnung von polynomiellen Invarianten. Master’s thesis, Technische Universität München, München (2004)Google Scholar
  13. 13.
    Rodríguez-Carbonell, E., Kapur, D.: An abstract interpretation approach for automatic generation of polynomial invariants. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Rodríguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial invariants of bounded degree using abstract interpretation. Science of Computer Programming 64, 54–75 (2007)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Sankaranarayanan, S., Henry, Z.M., Sipma, B.: Non-linear loop invariant generation using gröbner bases. In: ACM SIGPLAN Principles of Programming Languages (POPL) (2004)Google Scholar
  16. 16.
    Shekhar, N., Kalla, P., Enescu, F., Gopalakrishnan, S.: Equivalence verification of polynomial datapaths with fixed-size bit-vectors using finite ring algebra. In: International Conference on Computer-Aided Design (ICCAD), pp. 291–296 (2005)Google Scholar
  17. 17.
    Singmaster, D.: On polynomial functions (mod m). Journal of Number Theory 6, 345–352 (1974)CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Wienand, O.: The Groebner basis of the ideal of vanishing polynomials. Journal of Symbolic Computation (JSC) (to appear, 2007); Preprint in arxiv math.AC/0801.1177Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Helmut Seidl
    • 1
  • Andrea Flexeder
    • 1
  • Michael Petter
    • 1
  1. 1.Technische Universität MünchenGarchingGermany

Personalised recommendations