Transforming Abstract Interpretations by Abstract Interpretation

New Challenges in Language-Based Security
  • Roberto Giacobazzi
  • Isabella Mastroeni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5079)


In this paper we exploit abstract interpretation for transforming abstract domains and semantics. The driving force in both transformations is making domains and semantics, i.e. abstract interpretations themselves, complete, namely precise, for some given observation. We prove that a common geometric pattern is shared by all these transformations, both at the domain and semantic level. This pattern is based on the notion residuated closures, which in our case can be viewed as an instance of abstract interpretation. We consider these operations in the context of language-based security, and show how domain and semantic transformations model security policies and attackers, opening new perspectives in the model of information flow in programming languages.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banerjee, A., Giacobazzi, R., Mastroeni, I.: What you lose is what you leak: Information leakage in declassifivation policies. In: Proc. of the 23th Internat. Symp. on Mathematical Foundations of Programming Semantics MFPS 2007. ENTCS, vol. 1514. Elsevier, Amsterdam (2007)Google Scholar
  2. 2.
    Blyth, T.S., Janowitz, M.F.: Residuation theory. Pergamon Press, Oxford (1972)MATHGoogle Scholar
  3. 3.
    Cortesi, A., Filé, G., Giacobazzi, R., Palamidessi, C., Ranzato, F.: Complementation in abstract interpretation. ACM Trans. Program. Lang. Syst. 19(1), 7–47 (1997)CrossRefGoogle Scholar
  4. 4.
    Cousot, P.: The calculational design of a generic abstract interpreter. In: Broy, M., Steinbrüggen, R. (eds.) Calculational System Design. NATO ASI Series F. IOS Press, Amsterdam (1999)Google Scholar
  5. 5.
    Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theor. Comput. Sci. 277(1-2), 47–103 (2002)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proc. of Conf. Record of the 4th ACM Symp. on Principles of Programming Languages (POPL 1977), pp. 238–252. ACM Press, New York (1977)CrossRefGoogle Scholar
  7. 7.
    Cousot, P., Cousot, R.: A constructive characterization of the lattices of all retractions, preclosure, quasi-closure and closure operators on a complete lattice. Portug. Math. 38(2), 185–198 (1979)MathSciNetMATHGoogle Scholar
  8. 8.
    Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proc. of Conf. Record of the 6th ACM Symp. on Principles of Programming Languages (POPL 1979), pp. 269–282. ACM Press, New York (1979)CrossRefGoogle Scholar
  9. 9.
    Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing approaches to abstract interpretation (invited paper). In: Bruynooghe, M., Wirsing, M. (eds.) Proc. of the 4th Internat. Symp. on Programming Language Implementation and Logic Programming (PLILP 1992). LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992)Google Scholar
  10. 10.
    Cousot, P., Cousot, R.: Systematic design of program transformation frameworks by abstract interpretation. In: Proc. of Conf. Record of the Twentyninth Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, pp. 178–190. ACM Press, New York (2002)Google Scholar
  11. 11.
    Filé, G., Giacobazzi, R., Ranzato, F.: A unifying view of abstract domain design. ACM Comput. Surv. 28(2), 333–336 (1996)CrossRefGoogle Scholar
  12. 12.
    Giacobazzi, R., Mastroeni, I.: Domain compression for complete abstractions. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 146–160. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Giacobazzi, R., Mastroeni, I.: Abstract non-interference: Parameterizing non-interference by abstract interpretation. In: Proc. of the 31st Annual ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages (POPL 2004), pp. 186–197. ACM-Press, New York (2004)CrossRefGoogle Scholar
  14. 14.
    Giacobazzi, R., Mastroeni, I.: Adjoining declassification and attack models by abstract interpretation. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 295–310. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples and refinements in abstract model-checking. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 356–373. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Giacobazzi, R., Ranzato, F.: Refining and compressing abstract domains. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 771–781. Springer, Heidelberg (1997)Google Scholar
  17. 17.
    Giacobazzi, R., Ranzato, F.: Optimal domains for disjunctive abstract interpretation. Sci. Comput. Program 32(1-3), 177–210 (1998)CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Giacobazzi, R., Ranzato, F.: Uniform closures: order-theoretically reconstructing logic program semantics and abstract domain refinements. Inform. and Comput. 145(2), 153–190 (1998)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations complete. J. of the ACM. 47(2), 361–416 (2000)CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract domains condensing. ACM Transactions on Computational Logic (ACM-TOCL) 6(1), 33–60 (2005)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Giacobazzi, R., Scozzari, F.: A logical model for relational abstract domains. ACM Trans. Program. Lang. Syst. 20(5), 1067–1109 (1998)CrossRefGoogle Scholar
  22. 22.
    Janowitz, M.F.: Residuated closure operators. Portug. Math. 26(2), 221–252 (1967)MathSciNetMATHGoogle Scholar
  23. 23.
    Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. on selected ares in communications 21(1), 5–19 (2003)CrossRefGoogle Scholar
  24. 24.
    Ward, M.: The closure operators of a lattice. Ann. Math. 43(2), 191–196 (1942)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Roberto Giacobazzi
    • 1
  • Isabella Mastroeni
    • 1
  1. 1.Dipartimento di InformaticaUniversità di VeronaVeronaItaly

Personalised recommendations