Quantitative Morphodynamic Analysis of Time-Lapse Imaging by Edge Evolution Tracking

  • Yuki Tsukada
  • Yuichi Sakumura
  • Shin Ishii
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4985)

Abstract

To perform morphodynamic profiling from time lapse images of neurite outgrowth, we developed an edge evolution tracking (EET) algorithm, by which cell boundary movements including an arbitrary complex boundary transition are quantified. This algorithm enables us to estimate temporal evolution of cellular edge, and thus to trace the transition of any objective edge movements. We show advantages of EET by comparing it with the other two methods on an artificial data set that imitates neural outgrowth. We also demonstrate the usefulness of our EET by applying it to a data set of time-lapse imaging of neural outgrowth. The results show verification of quantitative profiling for arbitrary complex cell boundary movements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aoki, K., Nakamura, T., Matsuda, M.: Spatio-temporal Regulation of Rac1 and Cdc42 Activity during Nerve Growth Factor-induced Neurite Outgrowth in PC12 Cells. J. Biol. Chem. 279(1), 713–719 (2004)CrossRefGoogle Scholar
  2. 2.
    Betz, T., Lim, D., et al.: Neuronal Growth: a Bistable A Stochastic Process. Phys. Rev. Lett. 96(9), 098103 (2006)Google Scholar
  3. 3.
    Cham, T., Cipolla, R.: Automated B-Spline Curve Representation Incorporating MDL and Error-Minimizing Control Point Insertion Strategies. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(1), 49–53 (1999)CrossRefGoogle Scholar
  4. 4.
    Dent, E.W., Gertler, F.B.: Cytoskeletal Dynamics and Transport in Growth Cone Motility and Axon Guidance. Neuron. 40(2), 209–227 (2003)CrossRefGoogle Scholar
  5. 5.
    Dotti, C.G., Sullivan, C.A., et al.: The Establishment of Polarity by Hippocampal Neurons in Culture. J. Neurosci. 8(4), 1454–1468 (1988)Google Scholar
  6. 6.
    Dubin-Thaler, B.J., Giannone, G., Döbereiner, H., Sheetz, M.P.: Nanometer Analysis of Cell Spreading on Matrix-Coated Surfaces Reveals Two Distinct Cell States and STEPs. Biophys. J. 86(3), 1794–1806 (2004)CrossRefGoogle Scholar
  7. 7.
    Dunn, G.A., Zicha, D.: Dynamics of Fibroblast Spreading. J. Cell. Sci. 108, 1239–1249 (1995)Google Scholar
  8. 8.
    Machacek, M., Danuser, G.: Morphodynamic Profiling of Protrusion Phenotypes. Biophys. J. 90(4), 1439–1452 (2006)CrossRefGoogle Scholar
  9. 9.
    Skaliora, I., Adams, R., Blakemore, C.: Morphology and Growth Patterns of Developing Thalamocortical Axons. J. Neurosci. 20(10), 3650–3662 (2000)Google Scholar
  10. 10.
    Woo, S., Gomez, M.T.: Rac1 and RhoA Promote Neurite Outgrowth through Formation and Stabilization of Growth Cone Point Contacts. J. Neurosci. 26(5), 1418–1428 (2006)CrossRefGoogle Scholar
  11. 11.
    Yamamoto, N., Higashi, S., Toyama, K.: Stop and Branch Behaviors of Geniculocortical Axons: A Time-Lapse Study in Organotypic Cocultures. J. Neurosci. 17(10), 3653–3663 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yuki Tsukada
    • 1
  • Yuichi Sakumura
    • 1
  • Shin Ishii
    • 1
  1. 1.Nara Institute of Science and Technology, TakayamachoIkoma NaraJapan

Personalised recommendations