The Effects of Theta Burst Transcranial Magnetic Stimulation over the Human Primary Motor and Sensory Cortices on Cortico-Muscular Coherence

  • Murat Saglam
  • Kaoru Matsunaga
  • Yuki Hayashida
  • Nobuki Murayama
  • Ryoji Nakanishi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4984)


Recent studies proposed a new paradigm of repetitive transcranial magnetic stimulation (rTMS), “theta burst stimulation” (TBS); to primary motor cortex (M1) or sensory cortex (S1) can influence cortical excitability in humans. Particularly it has been shown that TBS can induce the long-lasting effects with the stimulation duration shorter than those of conventional rTMSs. However, in those studies, effects of TBS over M1 or S1 were assessed only by means of motor- and/or somatosensory-evoked-potentials. Here we asked how the coherence between electromyographic (EMG) and electroencephalographic (EEG) signals during isometric contraction of the first dorsal interosseous muscle is modified by TBS. The coherence magnitude localizing for the C3 scalp site, and at 13-30Hz band, significantly decreased 30-60 minutes after the TBS on M1, but not that on S1, and recovered to the original level in 90-120 minutes. These findings indicate that TBS over M1 can suppress the cortico-muscular synchronization.


Theta Burst Transcranial Magnetic Stimulation Coherence Electroencephalogram Electromyogram Motor Cortex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown, P., Marsden, J.F.: Cortical network resonance and motor activity in humans. Neuroscientist 7(6), 518–527 (2001)CrossRefGoogle Scholar
  2. 2.
    Chouinard, P.A., Paus, T.: The primary motor and premotor areas of the human cerebral cortex. Neuroscientist 12(2), 143–152 (2006)CrossRefGoogle Scholar
  3. 3.
    Filipovic, S.R., Siebner, H.R., Rowe, J.B., Cordivari, C., Gerschlager, W., Rothwell, J.C., Frackowiak, R.S., Bhatia, K.P.: Modulation of cortical activity by repetitive transcranial magnetic stimulation (rTMS): a review of functional imaging studies and the potential use in dystonia. Adv. Neurol. 94, 45–52 (2004)Google Scholar
  4. 4.
    Huang, Y.Z., Edwards, M.J., Rounis, E., Bhatia, K.P., Rothwell, J.C.: Theta burst stimulation of the human motor cortex. Neuron 45, 201–206 (2005)CrossRefGoogle Scholar
  5. 5.
    Ishikawa, S., Matsunaga, K., Nakanishi, R., Kawahira, K., Murayama, N., Tsuji, S., Huang, Y.Z., Rothwell, J.C.: Effect of theta burst stimulation over the human sensorimotor cortex on motor and somatosensory evoked potentials. Clinical Neurophysiology (in press, 2007)Google Scholar
  6. 6.
    Mima, T., Hallett, M.: Electroencephalographic analysis of cortico-muscular coherence: reference effect, volume conduction and generator mechanism. Clinical Neurophysiology 110, 1892–1899 (1999)CrossRefGoogle Scholar
  7. 7.
    Murayama, N., Lin, Y.Y., Salenius, S., Hari, R.: Oscillatory interaction between human motor cortex and trunk muscles during isometric contraction. Neuroimage 14, 1206–1213 (2001)CrossRefGoogle Scholar
  8. 8.
    Conway, B.A., Halliday, D.M., Farmer, S.F., Shahani, U., Maas, P., Weir, A.I., Rosenberg, J.R.: Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J. Physiol. 489(3), 917–924 (1995)Google Scholar
  9. 9.
    Chen, W.H., Mima, T., Siebner, T., Oga, H.R., Hara, T., Satow, H., Begum, T., Shibasaki, H.: Low-frequency rTMS over lateral premotor cortex induces lasting changes in regional activation and functional coupling of cortical motor areas. Clinical Neurophysiology 114(9), 1628–1637 (2003)Google Scholar
  10. 10.
    Huang, Y.Z., Chen, R.S., Rothwell, J.C., Wen, H.Y.: The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin. Neurophysiol. 118(5), 1028–1032 (2007)CrossRefGoogle Scholar
  11. 11.
    MacDermott, A.B., Mayer, M.L., Westbrook, G.L., Smith, S.J., Barker, J.L.: NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321(6069), 519–522 (1986)CrossRefGoogle Scholar
  12. 12.
    Lefaucheur, J.P.: Repetitive transcranial magnetic stimulation (rTMS): insights into the treatment of Parkinson’s disease by cortical stimulation. Neurophysiol. Clin. 36(3), 125–133 (2006)CrossRefGoogle Scholar
  13. 13.
    Joo, E.Y., Han, S.J., Chung, S.H., Cho, J.W., Seo, D.W., Hong, S.B.: Antiepileptic effects of low-frequency repetitive transcranial magnetic stimulation by different stimulation durations and locations. Clin Neurophysiol 118(3), 702–708 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Murat Saglam
    • 1
  • Kaoru Matsunaga
    • 2
  • Yuki Hayashida
    • 1
  • Nobuki Murayama
    • 1
  • Ryoji Nakanishi
    • 2
  1. 1.Graduate School of Science and TechnologyKumamoto UniversityJapan
  2. 2.Department of NeurologyKumamoto Kinoh HospitalJapan

Personalised recommendations