Emergence of Interaction among Adaptive Agents

  • Georg Martius
  • Stefano Nolfi
  • J. Michael Herrmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5040)


Robotic agents can self-organize their interaction with the environment by an adaptive “homeokinetic” controller that simultaneously maximizes sensitivity of the behavior and predictability of sensory inputs. Based on previous work with single robots, we study the interaction of two homeokinetic agents. We show that this paradigm also produces quasi-social interactions among artificial agents. The results suggest that homeokinetic learning generates social behavior only in the the context of an actual encounter of the interaction partner while this does not happen for an identical stimulus pattern that is only replayed. This is in agreement with earlier experiments with human subjects.


Autonomous Robot Social Contingency Agency Detection Evolutionary Robotic Robotic Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Der, R., Hesse, F., Martius, G.: Learning to feel the physics of a body. In: Proc. CIMCA-IAWTIC 2006, Washington, DC, pp. 252–257. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  2. 2.
    Der, R., Hesse, F., Martius, G.: Rocking stamper and jumping snake from a dynamical system approach to artificial life. Adaptive Behavior 14, 105–115 (2006)CrossRefGoogle Scholar
  3. 3.
    Der, R., Martius, G., Hesse, F.: Research webpage (2008),
  4. 4.
    Der, R., Steinmetz, U., Pasemann, F.: Homeokinesis - a new principle to back up evolution with learning. In: Computational Intelligence for Modelling, Control, and Automation, vol. 55, pp. 43–47. IOS Press, Amsterdam (1999)Google Scholar
  5. 5.
    Nolfi, S.: Emergence of Communication in Embodied Agents: Co-Adapting Communicative and Non-Communicative Behaviours. Connection Science 17, 231–248 (2005)CrossRefGoogle Scholar
  6. 6.
    Auvray, M., Lenay, C., Stewart, J.: The attribution of intentionality in a simulated environment: the case of minimalist devices. In: Tenth Meeting of the Association for the Scientific Study of Consciousness, Oxford (2006)Google Scholar
  7. 7.
    Trevarthen, C.: The self born in intersubjectivity: The psychology of an infant communicating. In: Neisser, U. (ed.) The perceived Self, pp. 121–173. Cambridge Univerity Press, Cambridge (1993)Google Scholar
  8. 8.
    Di Paolo, E.A., Rohde, M., Iizuka, H.: Sensitivity to social contingency or stability of interaction? modelling the dynamics of perceptual crossing. New Ideas in Psychology, Special Issue on Dynamics and Psychology (in press, 2008)Google Scholar
  9. 9.
    Iizuka, H., Di Paolo, E.A.: Minimal agency detection of embodied agents. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 485–494. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Der, R., Martius, G., Hesse, F.: Let it roll – emerging sensorimotor coordination in a spherical robot. In: Rocha, L.M., et al. (eds.) Artificial Life X: 10th Int. Conf. on the Simulation and Synthesis of Living Systems, pp. 192–198. MIT Press, Cambridge (2006)Google Scholar
  11. 11.
    Martius, G., Herrmann, J.M., Der, R.: Guided self-organisation for autonomous robot development. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 766–775. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Rohde, M., Di Paolo, E.: An evolutionary robotics simulation of human minimal social interaction. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 485–497. Springer, Heidelberg (2006)Google Scholar
  13. 13.
    Stormark, K.M., Braarud, H.C.: Infants’ sensitivity to social contingency. Infant Behavior & Development 27, 195–203 (2004)CrossRefGoogle Scholar
  14. 14.
    Herrmann, J.M.: Dynamical systems for predictive control of autonomous robots. Theory in Biosciences 120, 241–252 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Georg Martius
    • 1
    • 2
    • 3
  • Stefano Nolfi
    • 4
  • J. Michael Herrmann
    • 1
    • 2
    • 5
  1. 1.Bernstein Center for Computational Neuroscience GöttingenGöttingenGermany
  2. 2.Institute for Nonlinear DynamicsUniversity of GöttingenGöttingenGermany
  3. 3.Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
  4. 4.Institute of Cognitive Sciences and TechnologiesLARRALRomaItaly
  5. 5.School of Informatics, Institute for Perception, Action and BehaviorEdinburgh UniversityEdinburghScotland U.K.

Personalised recommendations