Advertisement

Using an Adaptive Collaboration Script to Promote Conceptual Chemistry Learning

  • Dimitra Tsovaltzi
  • Bruce M. McLaren
  • Nikol Rummel
  • Oliver Scheuer
  • Andreas Harrer
  • Niels Pinkwart
  • Isabel Braun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5091)

Abstract

Chemistry students often learn to solve problems algorithmically, applying well-practiced procedures to problems. Such an approach may hinder development of conceptual understanding. We propose to promote conceptual learning by having pairs of students collaborate on problems in a virtual laboratory (VLab), assisted by a computer-mediated collaboration script that guides the students through the stages of scientific experimentation by adapting to a particular student’s (or dyad’s) skills. In this paper, we report on our early steps toward this goal, including technology development and an initial wizard-of-oz study.

Keywords

Conceptual Learning Tutor System Intelligent Tutor System Virtual Laboratory Collaborative Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gabel, D.L., Sherwood, R.D., Enochs, L.: Problem-Solving Skills of High School Chemistry Students. Journal of Research in Science Teaching 21(2), 221–233 (1984)CrossRefGoogle Scholar
  2. 2.
    Hausmann, R.G., Chi, M.T.H., Roy, M.: Learning from Collaborative Problem Solving: An Analysis of Three Hypothesized Mechanisms. In: Forbus, K.D., Gentner, D., Regier, T. (eds.) 26th annual Conference of the Cognitive Science Society, pp. 547–552. Lawrence Erlbaum, Mahwah (2004)Google Scholar
  3. 3.
    Kollar, I., Fischer, F., Hesse, F.W.: Collaboration scripts - a conceptual analysis. Educational Psychology Review 18(2), 159–185 (2006)CrossRefGoogle Scholar
  4. 4.
    Rummel, N., Spada, H.: Learning to Collaborate: An Instructional Approach to Promoting Collaborative Problem Solving in Computer Mediated Settings. Journal of the Learning Sciences 14(2) (2005)Google Scholar
  5. 5.
    VanLehn, K.: The Behavior of Tutoring Systems. International Journal of Artificial Intelligence in Education 16(3), 227–265 (2006)Google Scholar
  6. 6.
    Yaron, D., Evans, K., Karabinos, M.: Scenes and Labs Supporting Online Chemistry. In: The 83rd Annual AERA National Conference (2003)Google Scholar
  7. 7.
    Harrer, A., Pinkwart, N., McLaren, B.M., Scheuer, O.: How Do We Get the Pieces to Talk? A New Software Architecture to Support Interoperability Between Educational Software Tools. In: The 9th International Conference on Intelligent Tutoring Systems (ITS 2008) (2008)Google Scholar
  8. 8.
    De Jong, T.: Scaffolds for Computer Simulation Based Scientific Discovery Learning. In: Elen, J., Clark, R.E. (eds.) Dealing with Complexity in Learning Environments, pp. 107–128. Elsevier Science Publishers, London (2006)Google Scholar
  9. 9.
    Baker, R.S.J.d., Corbett, A.T., Koedinger, K.R., Evenson, S., Roll, I., Wagner, A.Z., Naim, M., Raspat, J., Baker, D.J., Beck, J.: Adapting to When Students Game an Intelligent Tutoring System. In: Proceedings of the 8th International Conference on Intelligent Tutoring Systems, pp. 392–401 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dimitra Tsovaltzi
    • 1
  • Bruce M. McLaren
    • 2
    • 1
  • Nikol Rummel
    • 3
  • Oliver Scheuer
    • 1
  • Andreas Harrer
    • 4
  • Niels Pinkwart
    • 5
  • Isabel Braun
    • 3
  1. 1.Deutsches Forschungszentrum Für Künstliche Intelligenz (DFKI)Germany
  2. 2.Carnegie Mellon UniversityU.S.A.
  3. 3.Albert-Ludwigs-Universität FreiburgGermany
  4. 4.Katholische Universität Eichstätt-IngolstadtGermany
  5. 5.Technische Universität ClausthalGermany

Personalised recommendations