Rigorously Defining and Analyzing Medical Processes: An Experience Report

  • Stefan Christov
  • Bin Chen
  • George S. Avrunin
  • Lori A. Clarke
  • Leon J. Osterweil
  • David Brown
  • Lucinda Cassells
  • Wilson Mertens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5002)


This paper describes our experiences in defining the processes associated with preparing and administrating chemotherapy and then using those process definitions as the basis for analyses aimed at finding and correcting defects. The work is a collaboration between medical professionals from a major regional cancer center and computer science researchers. The work uses the Little-JIL language to create precise process definitions, the Propel system to specify precise process requirements, and the FLAVERS system to verify that the process definitions adhere to the requirement specifications. The paper describes how these technologies were applied to successfully identify defects in the chemotherapy process. Although this work is still ongoing, early experiences suggest that this approach can help reduce medical errors and improve patient safety. The work has also helped us to learn about the desiderata for process definition and analysis technologies, both of which are expected to be broadly applicable to other domains.


Medical Professional Fault Tree Medical Process Exception Handler Process Definition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kohn, L.T., Corrigan, J.M., Donaldson, M.S. (eds.): To Err is Human: Building a Safer Health System. National Academies Press, Washington (1999)Google Scholar
  2. 2.
    Reid, P.P., Compton, W.D., Grossman, J.H., Fanjiang, G. (eds.): Building a Better Delivery System: A New Engineering/Healthcare Partnership. National Academies Press, Washington (2005)Google Scholar
  3. 3.
    Institute of Medicine: Crossing the Quality Chasm: A New Health System for the 21st Century. National Academies Press, Washington (2001)Google Scholar
  4. 4.
    Henneman, E.H., Cobleigh, R.L., Frederick, K., Katz-Bassett, E., Avrunin, G.A., Clarke, L.A., Osterweil, L.J., Andrzejewski, C., Merrigan, K., Henneman, P.L.: Increasing Patient Safety and Efficiency in Transfusion Therapy Using Formal Process Definitions. Transfusion Medicine Reviews 21, 49–57 (2007)CrossRefGoogle Scholar
  5. 5.
    Burgmeier, J.: Failure Mode and Effect Analysis: An Application in Reducing Risk in Blood Transfusion. Quality Improvement 28, 331–339 (2002)Google Scholar
  6. 6.
    Chen, B., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: Automatic Fault Tree Derivation from Little-JIL Process Definitions. In: Wang, Q., Pfahl, D., Raffo, D.M., Wernick, P. (eds.) SPW 2006 and ProSim 2006. LNCS, vol. 3966, pp. 150–158. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Clarke, E.M.J., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (2000)Google Scholar
  8. 8.
    Dwyer, M.B., Clarke, L.A., Cobleigh, J.M., Naumovich, G.: Flow Analysis for Verifying Properties of Concurrent Software Systems. ACM Trans. on Software Engineering and Methodology 13(4), 359–430 (2004)CrossRefGoogle Scholar
  9. 9.
    Cobleigh, J.M., Clarke, L.A., Osterweil, L.J.: Verifying Properties of Process Definitions. In: ACM SIGSOFT Intl. Symp. on Software Testing & Analysis, pp. 96–101. ACM Press, Portland, OR (2000)Google Scholar
  10. 10.
    Boose, E.R., Ellison, A.M., Osterweil, L.J., Clarke, L., Podorozhny, R., Hadley, J.L., Wise, A., Foster, D.R.: Ensuring Reliable Datasets for Environmental Models and Forecasts. Ecological Informatics, ECONINF84 2(3), 237–247 (2007)CrossRefGoogle Scholar
  11. 11.
    Schweik, C.M., Osterweil, L.J., Sondheimer, N., Thomas, C.: Analyzing Processes for E-Government Development: The Emergence of Process Modeling Languages. Journal of E-Government 1(4), 63–89 (2004)Google Scholar
  12. 12.
    Cass, A.G., Lerner, B.S., McCall, E.K., et al.: Little-JIL/Juliette: A Process Definition Language and Interpreter. In: ACM/IEEE 20th Intl Conf. on Software Engineering, Limerick, Ireland, pp. 754–758 (2000)Google Scholar
  13. 13.
    Wise, A.: Little-JIL 1.5 Language Report. Lab. for Advanced Software Engineering Research (LASER), Dept. of Comp. Sci, UMass, Amherst (2006)Google Scholar
  14. 14.
    Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley, Reading (2004)Google Scholar
  15. 15.
    Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: PROPEL: An Approach To Supporting Property Elucidation. In: ACM/IEEE 24th Intl. Conf. on Software Engineering, Orlando, FL, pp. 11–21 (2002)Google Scholar
  16. 16.
    Cobleigh, R.L., Avrunin, G.S., Clarke, L.A.: User Guidance for Creating Precise and Accessible Property Specifications. In: 14th ACM SIGSOFT Symp. on the Foundations of Software Engineering, Portland, OR, pp. 208–218 (2006)Google Scholar
  17. 17.
    Protocure II (2006),
  18. 18.
    ten Teije, A., Marcos, M., Balser, M., van Croonenborg, J., Duelli, C., van Harmelen, F., Lucas, P., Miksch, S., Reif, W., Rosenbrand, K., Seyfang, A.: Improving Medical Protocols by Formal Methods. Artificial Intelligence in Medicine 36(3), 193–209 (2006)CrossRefGoogle Scholar
  19. 19.
    Baumler, S., Balser, M., Dunets, A., Reif, W., Schmitt, J.: Verification of Medical Guidelines by Model Checking – A Case Study. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 219–233. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Noumeir, R.: Radiology Interpretation Process Modeling. Journal of Biomedical Informatics 39(2), 103–114 (2006)CrossRefGoogle Scholar
  21. 21.
    Ruffolo, M., Curio, R., Gallucci, L.: Process Management in Health Care: A System for Preventing Risks and Medical Errors. Business Process Mgmt, 334–343 (2005)Google Scholar
  22. 22.
    Voak, D., Chapman, J.F., Phillips, P.: Quality of Transfusion Practice Beyond the Blood Transfusion Laboratory is Essential to Prevent ABO-incompatible Death. Transfusion Medicine 10, 95–96 (2000)CrossRefGoogle Scholar
  23. 23.
    Battles, J.B., Kaplan, H.S., van der Schaaf, T.W., Shea, C.E.: The Attributes of Medical Event Reporting Systems for Transfusion Medicine. Arch Pathology Laboratory Medicine 122, 231–238 (1998)Google Scholar
  24. 24.
    Galel, S.A., Richards, C.A.: Practical Approaches to Improve Laboratory Performance and Transfusion Safety. Am. J. Clinical Pathology 107(Suppl. 1), S43–S49 (1997)Google Scholar
  25. 25.
    van der Gaag, L.C., Renooji, S., Witteman, C.L.M., Aleman, B.M.P., Taal, B.G.: Probabilities for a Probabilistic Network: A Case-Study in Oesophageal Cancer. Artificial Intelligence in Medicine 25(2), 123–148 (2002)CrossRefGoogle Scholar
  26. 26.
    Sutton, S.M.J., Heimbigner, D.M., Osterweil, L.J.: APPL/A: A Language for Software-Process Programming. ACM Trans. on Software Engineering and Methodology 4(3), 221–286 (1995)CrossRefGoogle Scholar
  27. 27.
    Ben-Shaul, I.Z., Kaiser, G.: A Paradigm for Decentralized Process Modeling and its Realization in the Oz Environment. In: ACM/IEEE 16th Intl. Conf. on Software Engineering, pp. 179–188 (1994)Google Scholar
  28. 28.
    Bandinelli, S., Fuggetta, A., Ghezzi, C.: Process Model Evolution in the SPADE Environment. ACM/IEEE 15th Trans. on Software Engineering 19(12) (1993)Google Scholar
  29. 29.
    Paul, S., Park, E., Chaar, J.: RainMan: A Workflow System for the Internet. In: Usenix Symposium on Internet Technologies and Systems (1997)Google Scholar
  30. 30.
    Grosof, B., Labrou, Y., Chan, H.Y.: A Declarative Approach to Business Rules in Contracts: Courteous Logic Programs in XML. In: ACM Conf. on Electronic Commerce, Denver, CO, pp. 68–77 (1999)Google Scholar
  31. 31.
    Avrunin, G.S., Corbett, J.C., Dwyer, M.B.: Benchmarking Finite-State Verifiers. Software Tools for Technology Transfer 2, 317–320 (2000)CrossRefGoogle Scholar
  32. 32.
    Corbett, J.C., Avrunin, G.S.: Using Integer Programming to Verify General Safety and Liveness Properties. Formal Methods in System Design 6, 97–123 (1995)zbMATHCrossRefGoogle Scholar
  33. 33.
    Raunak, M.S., Osterweil, L.J.: Effective Resource Allocation for Process Simulation: A Position Paper. In: 6th Intl. Workshop on Software Process Simulation and Modeling, St. Louis, MO (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Stefan Christov
    • 1
  • Bin Chen
    • 1
  • George S. Avrunin
    • 1
  • Lori A. Clarke
    • 1
  • Leon J. Osterweil
    • 1
  • David Brown
    • 2
  • Lucinda Cassells
    • 2
  • Wilson Mertens
    • 2
  1. 1.Laboratory for Advanced Software Engineering Research (LASER)University of Massachusetts at AmherstAmherst
  2. 2.D’Amour Center for Cancer CareSpringfield

Personalised recommendations