Parameterized Algorithms and Hardness Results for Some Graph Motif Problems

  • Nadja Betzler
  • Michael R. Fellows
  • Christian Komusiewicz
  • Rolf Niedermeier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5029)


We study the NP-complete Graph Motif problem: given a vertex-colored graph G = (V,E) and a multiset M of colors, does there exist an S ⊆ V such that G[S] is connected and carries exactly (also with respect to multiplicity) the colors in M? We present an improved randomized algorithm for Graph Motif with running time O(4.32|M|·|M|2·|E|). We extend our algorithm to list-colored graph vertices and the case where the motif G[S] needs not be connected. By way of contrast, we show that extending the request for motif connectedness to the somewhat “more robust” motif demands of biconnectedness or bridge-connectedness leads to W[1]-complete problems. Actually, we show that the presumably simpler problems of finding (uncolored) biconnected or bridge-connected subgraphs are W[1]-complete with respect to the subgraph size. Answering an open question from the literature, we further show that the parameter “number of connected motif components” leads to W[1]-hardness even when restricted to graphs that are paths.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alm, E., Arkin, A.P.: Biological networks. Curr. Opin. Struc. Biol. 13(2), 193–202 (2003)CrossRefGoogle Scholar
  2. 2.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution. In: Proc. 39th STOC, pp. 67–74. ACM, New York (2007)Google Scholar
  4. 4.
    Cesati, M.: Perfect code is W[1]-complete. Inform. Process. Lett. 81, 163–168 (2002)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Deshpande, P., Barzilay, R., Karger, D.R.: Randomized decoding for selection-and-ordering problems. In: Proc. NAACL HLT 2007. Association for Computational Linguistics, pp. 444–451 (2007)Google Scholar
  6. 6.
    Dondi, R., Fertin, G., Vialette, S.: Weak pattern matching in colored graphs: Minimizing the number of connected components. In: Proc. 10th ICTCS. WSPC, vol. 4596, pp. 27–38. World Scientific, Singapore (2007)Google Scholar
  7. 7.
    Dost, B., Shlomi, T., Gupta, N., Ruppin, E., Bafna, V., Sharan, R.: QNet: A tool for querying protein interaction networks. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS (LNBI), vol. 4453, pp. 1–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Sharp tractability borderlines for finding connected motifs in vertex-colored graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 340–351. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Hüffner, F., Wernicke, S., Zichner, T.: Algorithm engineering for color-coding to facilitate signaling pathway detection. In: Proc. 5th APBC. Advances in Bioinf. and Comput. Biol., vol. 5, pp. 277–286. Imperial College Press (2007); Extended version to appear in AlgorithmicaGoogle Scholar
  11. 11.
    Hüffner, F., Wernicke, S., Zichner, T.: FASPAD: fast signaling pathway detection. Bioinformatics 23(13), 1708–1709 (2007)CrossRefGoogle Scholar
  12. 12.
    Lacroix, V., Fernandes, C.G., Sagot, M.-F.: Reaction motifs in metabolic networks. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 178–191. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)MATHGoogle Scholar
  14. 14.
    Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient algorithms for detecting signaling pathways in protein interaction networks. J. Comput. Biol. 13(2), 133–144 (2006)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nat. Biotechnol. 24, 427–433 (2006)CrossRefGoogle Scholar
  16. 16.
    Shen-Orr, S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of escherichia coli. Nat. Genet. 31(1), 64–68 (2002)CrossRefGoogle Scholar
  17. 17.
    Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM J. Comp. (1), 146–160 (1972)Google Scholar
  18. 18.
    Wernicke, S.: Efficient detection of network motifs. IEEE ACM T. Comput. Bi. 3(4), 347–359 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nadja Betzler
    • 1
  • Michael R. Fellows
    • 2
  • Christian Komusiewicz
    • 1
  • Rolf Niedermeier
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.PC Research Unit, Office of DVC (Research)University of NewcastleCallaghanAustralia

Personalised recommendations