A Flexible Method for Haptic Rendering of Isosurface from Volumetric Data

  • Bob Ménélas
  • Mehdi Ammi
  • Patrick Bourdot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5024)


Our work proposes a haptic interaction technique for the rendering of isosurfaces. A virtual contact point is computed corresponding to the most suitable isovalue position in a 3D data grid. With this method we can freely explore and understand complex data fields without explicitly computing the geometry of the isosurface, nor having any intermediate representation. Thus, a very fast haptic rendering loop is easily obtainable. Moreover, our approach is flexible because the contact detection and force feedback computation are automatically adapted to take into account regions presenting high spatial frequency data as in the CFD case.


Computational Fluid Dynamics(CFD) Haptic Volumic Rendering High Spatial Frequency Isosurface Large Data set Massive data sets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avila, R.S., Sobierajski, L.M.: A haptic interaction method for volume visualization. In: Proc. of IEEE Visualization, pp. 197–204 (1996)Google Scholar
  2. 2.
    Chen, K.-W., Heng, P.-A., Sun., H.: Direct haptic rendering of isosurface by intermediate representation. In: ACM Symposium on Virtual Reality Software and Technology VRST (2000)Google Scholar
  3. 3.
    Fauvet, N., Ammi, M., Bourdot, P.: Experiments of Haptic Perception Techniques for Computional Fluid Dynamics. In: Proc. of Cyberworlds, pp. 322–329 (2007)Google Scholar
  4. 4.
    Ikits, M., Brederson, J.D., Hansen, C.D., Johnson, C.: A constraint-based technique for haptic volume exploration. In: Proc of IEEE Visualization, pp. 263–269 (2003)Google Scholar
  5. 5.
    Iwata, H., Noma, H.: Volume haptization. In: Proc. of IEEE 1993 Symposium on Research Frontiers in Virtual Reality, pp. 16–23 (1993)Google Scholar
  6. 6.
    Körner, O., Schill, M., Wagner, C., Bender, H.-J., Männer, R.: Haptic volume rendering with an intermediate local representation. In: Proc of the 1st International Workshop on the Haptic Devices in Medical Applications, pp. 79–84 (1999)Google Scholar
  7. 7.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: Proc. of Computer Graphics, vol. 21, pp. 163–169 (1987)Google Scholar
  8. 8.
    Lundin Palmerius, K.: Direct Volume Haptics for Visualization, Doctoral thesis, Linköping University, Department of Science and Technology (2007)Google Scholar
  9. 9.
    Ménélas, B., Fauvet, N., Ammi, A., Bourdot, P.: Direct Haptic Rendering For Large Datasets With High Gradients. In: Workshop on Haptic for Ambient System, Amby-Sys Quebec-city, Canada (2008)Google Scholar
  10. 10.
    Pao, L., Lawrence, D.A.: Synergistic visual/haptic computer interfaces. In: Workshop on Research and Education in Systems, Computation and Control Engineering, pp. 155–162 (1998)Google Scholar
  11. 11.
    Van Reimersdahl, T., Bley, V.F., Kuhlen, T., Bischof, C.: Haptic Rendering Techniques for the Interactive Exploration of CFD Data sets in Virtual Environments (2003)Google Scholar
  12. 12.
    Wall, S., Harwin, W.: Quantification of the effects of haptic feedback during a motor skills task in a simulated environment (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Bob Ménélas
    • 1
  • Mehdi Ammi
    • 1
  • Patrick Bourdot
    • 1
  1. 1.CNRS-LIMSI, V&AR “VENISE” teamUniversity of Paris-Sud XIOrsayFrance

Personalised recommendations