Modulating Real Object Stiffness for Haptic Augmented Reality

  • Seokhee Jeon
  • Seungmoon Choi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5024)

Abstract

In haptic augmented reality, a user can enjoy the sensations of real objects augmented with synthetic haptic stimuli created by a haptic interface. For example, a haptic augmented reality system may allow the user to feel a soft sponge as a stiffer rubber. In this paper, we present a framework in which the stiffness of a real object can be modulated with additional virtual haptic feedback. For this, a commercial haptic interface is extended with a force sensor. Efficient and effective algorithms for contact detection and stiffness modulation are proposed for the closed-loop framework. Performance evaluation with real samples showed that the stiffness modulation is quite capable except for very rigid objects (e.g., a wood plate) where unstable oscillations dominate the response. This work serves as an initial building block towards a general haptic augmented reality system.

Keywords

Stiffness modulation Haptic augmented reality Mixed reality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adcock, M., Hutchins, M., Gunn, C.: Augmented reality haptics: using ARToolKit for display of haptic applications. In: Proceedings of Augmented Reality Toolkit Workshop, pp. 1–2 (2003)Google Scholar
  2. 2.
    Bayart, B., Drif, A., Kheddar, A., Didier, J.-Y.: Visuo-haptic blending applied to a tele-touch-diagnosis application. In: Shumaker, R. (ed.) HCII 2007 and ICVR 2007. LNCS, vol. 4563, pp. 617–626. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bianchi, G., Jung, C., Knoerlein, B., Szekely, G., Harders, M.: High-fidelity visuo-haptic interaction with virtual objects in multi-modal AR systems. In: Proceedings of the IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 187–196 (2006)Google Scholar
  4. 4.
    Bianchi, G., Knoerlein, B., Szekely, G., Harders, M.: High precision augmented reality haptics. In: Proceedings of EuroHaptics, pp. 169–168 (2006)Google Scholar
  5. 5.
    Billinghurst, M., Kato, H., Poupyrev, I.: The MagicBook – Moving seamlessly between reality and virtuality. IEEE Computer Graphics & Applications 21(3), 6–8 (2001)Google Scholar
  6. 6.
    Borst, C.W., Volz, R.A.: Evaluation of a haptic mixed reality system for interactions with a virtual control panel. Presence: Teleoperators and Virtual Environments 14(6), 677–696 (2005)CrossRefGoogle Scholar
  7. 7.
    Jones, L.A., Hunter, I.W.: A perceptual analysis of stiffness. Experimental Brain Research 79(1), 150–156 (1990)CrossRefGoogle Scholar
  8. 8.
    Kajimoto, H., Kawakami, N., Tachi, S., Inami, M.: SmartTouch: Electric skin to touch the untouchable. IEEE Computer Graphics & Applications 24(1), 36–43 (2004)CrossRefGoogle Scholar
  9. 9.
    Kato, H., Billinghurst, M.: Marker tracking and HMD calibration for a video-based augmented reality conferencing system. In: Proceedings of the IEEE and ACM International Workshop on Augmented Reality, pp. 85–94 (1999)Google Scholar
  10. 10.
    Kuchenbecker, K.J., Fiene, J., Niemeyer, G.: Improving contact realism through event-based haptic feedback. IEEE Transactions on Visualization and Computer Graphics 12(2), 219–230 (2006)CrossRefGoogle Scholar
  11. 11.
    Lawrence, D.A., Pao, L.Y., Dougherty, A.M., Salada, M.A., Pavlou, Y.: Rate-hardness: A new performance metric for haptic interfaces. IEEE Transactions on Robotics and Automation 16(4), 357–371 (2000)CrossRefGoogle Scholar
  12. 12.
    Lewis, F.L., Abdallah, C.T., Dawson, D.M.: Control of Robot Manipulators. MacMillan Publishing Company, New York (1993)Google Scholar
  13. 13.
    Milgram, P., Colquhoun Jr., H.: A taxonomy of real and virtual world display integration. In: Tamura, Y. (ed.) Mixed Reality – Merging Real and Virtual Worlds, pp. 1–16. Springer, Berlin (1999)Google Scholar
  14. 14.
    Nojima, T., Sekiguchi, D., Inami, M., Tachi, S.: The SmartTool: A system for augmented reality of haptics. In: Proceedings of the IEEE Virtual Reality Conference, p. 67 (2002)Google Scholar
  15. 15.
    Tan, H.Z., Durlach, N.I., Beauregard, G.L., Srinivasan, M.A.: Manual discrimination of compliance using active pinch grasp: The roles of force and work cues. Perception and Psychophysics 57(4), 495–510 (1995)Google Scholar
  16. 16.
    Vallino, J.R., Brown, C.M.: Haptics in augmented reality. In: Proceedings of the IEEE International Conference on Multimedia Computing and Systems, pp. 195–200 (1999)Google Scholar
  17. 17.
    Van Vlack, L.H.: Elements of Material Science and Engineering, 6th edn. Addison-Wesley Publishing Company, Reading (1989)Google Scholar
  18. 18.
    Ye, G., Corso, J., Hager, G., Okamura, A.: VisHap: Augmented reality combining haptics and vision. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 3425–3431 (2003)Google Scholar
  19. 19.
    Zeigler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Journal of Dynamic Systems, Measurement, and Control 115, 220–222 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Seokhee Jeon
    • 1
  • Seungmoon Choi
    • 1
  1. 1.Haptics and Virtual Reality Laboratory Department of Computer Science and EngineeringPOSTECHKorea

Personalised recommendations