Analyzing Perceptual Representations of Complex, Parametrically-Defined Shapes Using MDS

  • Nina Gaißert
  • Christian Wallraven
  • Heinrich H. Bülthoff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5024)

Abstract

In this study we show that humans are able to form a perceptual space from a complex, three-dimensional shape space that is highly congruent to the physical object space no matter if the participants explore the objects visually or haptically. The physical object space consists of complex, shell-shaped objects which were generated by varying three shape parameters. In several psychophysical experiments participants explored the objects either visually or haptically and performed similarity ratings. Multidimensional scaling (MDS) analyses showed high congruency of the visual and haptic perceptual space to the physical object space. Additionally, visual and haptic exploration resulted in very similar MDS maps providing evidence for one shared perceptual space underlying both modalities.

Keywords

haptic perception visual perception multidimensional scaling similarity psychophysics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borg, I., Groenen, P.J.F.: Modern Multidimensional Scaling: Theory and Applications. Springer, Heidelberg (2005)MATHGoogle Scholar
  2. 2.
    Brainard, D.H.: The psychophysics toolbox. Spat Vis. 10(4), 433–436 (1997)CrossRefGoogle Scholar
  3. 3.
    Cooke, T., Jäkel, F., Wallraven, C., Bülthoff, H.H.: Multimodal similarity and categorization of novel, three-dimensional objects. Neuropsychologia 45(3), 484–495 (2007)CrossRefGoogle Scholar
  4. 4.
    Cooke, T., Kannengiesser, S., Wallraven, C., Bülthoff, H.H.: Object feature validation using visual and haptic similarity ratings. ACM Trans. Appl. Percept. 3(3), 239–261 (2006)CrossRefGoogle Scholar
  5. 5.
    Cooke, T., Wallraven, C., Bülthoff, H.H.: A comparison of visual and haptic object representations based on similarity. In: 9th International Conference on Information Visualisation, pp. 33–40. IEEE Computer Science Society, Los Alamitos (2005)Google Scholar
  6. 6.
    Cooke, T., Wallraven, C., Bülthoff, H.H.: Characterizing perceptual differences due to haptic exploratory procedures: An mds approach. In: EuroHaptics 2006 Conference, July 2006, pp. 11–19 (2006)Google Scholar
  7. 7.
    Cox, T.F., Cox, M.A.: Multidimensional Scaling, vol. 2. Chapman and Hall, Boca Raton (2001)MATHGoogle Scholar
  8. 8.
    Cutzu, F., Edelman, S.: Representation of object similarity in human vision: psychophysics and a computational model. Vision Res. 38(15-16), 2229–2257 (1998)CrossRefGoogle Scholar
  9. 9.
    Fowler, D.R., Meinhardt, H., Prusinkiewicz, P.: Modeling seashells. In: SIGGRAPH 1992: Proceedings of the 19th annual conference on Computer graphics and interactive techniques, New York, NY, USA, pp. 379–387. ACM Press, New York (1992)CrossRefGoogle Scholar
  10. 10.
    Garbin, C.P., Bernstein, I.H.: Visual and haptic perception of three-dimensional solid forms. Percept Psychophys 36(2), 104–110 (1984)Google Scholar
  11. 11.
    Hollins, M., Faldowski, R., Rao, S., Young, F.: Perceptual dimensions of tactile surface texture: a multidimensional scaling analysis. Percept Psychophys 54(6), 697–705 (1993)Google Scholar
  12. 12.
    James, T.W., Humphrey, G.K., Gati, J.S., Servos, P., Menon, R.S., Goodale, M.A.: Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 40(10), 1706–1714 (2002)CrossRefGoogle Scholar
  13. 13.
    Klatzky, R.L., Lederman, S.J.: Touch in Experimental Psychology. John Wiley & Sons, New York (2003)Google Scholar
  14. 14.
    Loomis, J.M., Klatzky, R.L., Lederman, S.J.: Similarity of tactual and visual picture recognition with limited field of view. Perception 20, 167–177 (1991)CrossRefGoogle Scholar
  15. 15.
    Newell, F.N., Bülthoff, H.H., Ernst, M.O.: Cross-modal perception of actively explored objects. In: Eurohaptics 2003 Conference Proceedings, pp. 291–299 (2003)Google Scholar
  16. 16.
    Pelli, D.G.: The videotoolbox software for visual psychophysics: transforming numbers into movies. Spat Vis. 10(4), 437–442 (1997)CrossRefGoogle Scholar
  17. 17.
    Shepard, R.N.: Toward a universal law of generalization for psychological science. Science 237(4820), 1317–1323 (1987)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Nina Gaißert
    • 1
  • Christian Wallraven
    • 1
  • Heinrich H. Bülthoff
    • 1
  1. 1.MPI for Biological CyberneticsTübingenGermany

Personalised recommendations