Advertisement

The Effect of Emotional Speech on a Smart-Home Application

  • Theodoros Kostoulas
  • Iosif Mporas
  • Todor Ganchev
  • Nikos Fakotakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5027)

Abstract

The present work studies the effect of emotional speech on a smart-home application. Specifically, we evaluate the recognition performance of the automatic speech recognition component of a smart-home dialogue system for various categories of emotional speech. The experimental results reveal that word recognition rate for emotional speech varies significantly across different emotion categories.

Keywords

speech recognition emotional speech dialogue systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chu-Carroll, J.: MIMIC: An adaptive mixed initiative spoken dialogue system for information queries. In: Proc. of the 6th ACL Conference on Applied Natural Language Processing, Seattle, WA, pp. 97–104 (2000)Google Scholar
  2. 2.
    Huang, X., Acero, A., Chelba, C., Deng, L., Duchene, D., Goodman, J., Hon, H.-W., Jacoby, D., Jiang, L., Loynd, R., Mahajan, M., Mau, P., Meredith, S., Mughal, S., Neto, S., Plumpe, M., Wand, K., Wang, Y.: MIPAD: A next generation PDA prototype. In: Proc. ICSLP, Beijing, China, pp. 33–36 (2000)Google Scholar
  3. 3.
    Johnston, M., Bangalore, S., Vasireddy, G., Stent, A., Ehlen, P., Walker, M., Whittaker, S., Maloor, P.: MATCH: An architecture for multimodal dialogue systems. In: Proc. of the 40th Annu. Meeting of the Association for Computational Linguistics, pp. 376–383 (2002)Google Scholar
  4. 4.
    Lemon, O., Georgila, K., Stuttle, M.: An ISU dialogue system exhibiting reinforcement learning of dialogue policies: generic slot-filling in the TALK in-car system. In: EACL (demo session) (2006)Google Scholar
  5. 5.
    Bos, J., Klein, E., Lemon, O., Oka, T.: DIPPER: Description and Formalisation of an Information-State Update Dialogue System Architecture. In: 4th SIGdial Workshop on Discourse and Dialogue, Sapporo, pp. 115–124 (2003)Google Scholar
  6. 6.
    Potamianos, A., Fosler-Lussier, E., Ammicht, E., Peraklakis, M.: Information seeking spoken dialogue systems Part II: Multimodal Dialogue. IEEE Transactions on Multimedia 9(3), 550–566 (2007)CrossRefGoogle Scholar
  7. 7.
    Rotaru, M., Litman, D.J., Forbes-Riley, K.: Interactions between Speech Recognition Problems and User Emotions. In: Proc. Interspeech 2005, pp. 2481–2484 (2005)Google Scholar
  8. 8.
    Steeneken, H.J.M., Hansen, J.H.L.: Speech under stress conditions: Overview of the effect of speech production and on system performance. In: ICASSP 1999, vol. 4, pp. 2079–2082 (1999)Google Scholar
  9. 9.
    Polzin, S.T., Waibel, A.: Pronunciation variations in emotional speech. In: Strik, H., Kessens, J.M., Wester, M. (eds.) Modeling pronunciation variation for automatic speech recognition. Proceedings of the ESCA Workshop, pp. 103–108 (1998)Google Scholar
  10. 10.
    Athanaselis, T., Bakamidis, S., Dologlou, I., Cowie, R., Douglas-Cowie, E., Coxb, C.: ASR for emotional speech: Clarifying the issues and enhancing performance. Neural Networks 18, 437–444 (2005)CrossRefGoogle Scholar
  11. 11.
    Lee, K.-F., Hon, H.-W., Reddy, R.: An overview of the SPHINX speech recognition system. IEEE Transactions on Acoustics, Speech and Signal processing 38(1), 35–45 (1990)CrossRefGoogle Scholar
  12. 12.
    Paul, D., Baker, J.: The design of the wall street journal-based CSR corpus. In: Proceedings of ARPA Speech and Natural Language Workshop, ARPA, pp. 357–362 (1992)Google Scholar
  13. 13.
    University of Pennsylvania, Linguistic Data Consortium, Emotional Prosody Speech, http://www.ldc.uppen.edu/Catalog/CatalogEntry.jsp?cataloId=LDC2002S28
  14. 14.
    Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., Taylor, J.G.: Emotion recognition in human-computer interaction. IEEE Signal Processing Magazine 18(1), 32–80 (2001)CrossRefGoogle Scholar
  15. 15.
    Guojun, Z., Hansen, J.H.L., Kaiser, J.F.: Nonlinear feature based classification of speech under stress. IEEE Transactions on Speech and Audio Processing 9, 201–216 (2001)CrossRefGoogle Scholar
  16. 16.
    Whissell, C.: The dictionary of Affect in Language. In: Plutchik, R., Kellerman, H. (eds.) Emotion: Theory, research and experience, vol. 4, Academic Press, New York (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Theodoros Kostoulas
    • 1
  • Iosif Mporas
    • 1
  • Todor Ganchev
    • 1
  • Nikos Fakotakis
    • 1
  1. 1.Artificial Intelligence Group, Wire Communications Laboratory, Electrical and Computer Engineering DepartmentUniversity of PatrasRion-PatrasGreece

Personalised recommendations