Advertisement

Ranking Links on the Web: Search and Surf Engines

  • Jean-Louis Lassez
  • Ryan Rossi
  • Kumar Jeev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5027)

Abstract

The main algorithms at the heart of search engines have focused on ranking and classifying sites. This is appropriate when we know what we are looking for and want it directly. Alternatively, we surf, in which case ranking and classifying links becomes the focus. We address this problem using a latent semantic analysis of the web. This technique allows us to rate, suppress or create links giving us a version of the web suitable for surfing. Furthermore, we show on benchmark examples that the performance of search algorithms such as PageRank is substantially improved as they work on an appropriately weighted graph.

Keywords

Search Engines Surf Engines Singular Value Decomposition Heuristic Search Intelligent Systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the web. Technical report, Stanford Digital Library Technologies Project (1998)Google Scholar
  2. 2.
    Kleinberg, J.: Authoritative sources in a hyperlinked environment. In: Proceedings of the 9th ACM-SIAM, SODA (1998)Google Scholar
  3. 3.
    Lempel, R., Moran, S.: The stochastic approach for link-structure analysis (SALSA) and the TKC effect. In: 9th International WWW Conference (2000)Google Scholar
  4. 4.
    Jeev, K., Lassez, J.-L.: Symbolic Stochastic Systems. AMCS, 321–328 (2004)Google Scholar
  5. 5.
    Berry, M.W., Browne, M.: Understanding Search Engines: Mathematical Modeling and Text Retrieval. SIAM, Philadelphia (2005)zbMATHGoogle Scholar
  6. 6.
    Deerwester, S., Dumais, S., Landauer, T.K., Furnas, G., Harshman, R.: Indexing by latent semantic analysis. J. Amer. Soc. Info. Sci. 41, 391–407 (1990)CrossRefGoogle Scholar
  7. 7.
    Kumar, S.R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling emerging cybercommunities automatically. In: 8th International WWW Conference (1999)Google Scholar
  8. 8.
    Markov, A.A.: Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug ot druga, Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete, 2-ya seriya, tom 15, 9 4, 135-156 (1906)Google Scholar
  9. 9.
    Kirchhoff, G.: Über die Auflösung der Gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)CrossRefGoogle Scholar
  10. 10.
    Langville, A., Meyer, C.: Google’s PageRank and Beyond: The science of search engine rankings. Princeton University Press, Princeton, New Jersey (2006)zbMATHGoogle Scholar
  11. 11.
    Chandru, V., Lassez, J.-L.: Qualitative Theorem Proving in Linear Constraints, Theory and Practice, Verification, pp. 395–406 (2003)Google Scholar
  12. 12.
    Lassez, J.-L.: From LP to LP: Programming with Constraints. In: Ito, T., Meyer, A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 420–446. Springer, Heidelberg (1991)Google Scholar
  13. 13.
    Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218 (1936)CrossRefGoogle Scholar
  14. 14.
    Lassez, J.-L., Karadeniz, T., Mukkamala, S.: Zoomed Clusters. ICONIP, 824–830 (2006)Google Scholar
  15. 15.
    Tsaparas, P.: Using non-linear dynamical systems for web searching and ranking. Principles of Database Systems, 59–69 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jean-Louis Lassez
    • 1
  • Ryan Rossi
    • 1
  • Kumar Jeev
    • 2
  1. 1.Coastal Carolina UniversityUSA
  2. 2.Johns Hopkins UniversityUSA

Personalised recommendations