Sensors pp 287-305

Part of the Lecture Notes Electrical Engineering book series (LNEE, volume 21)

Ultrasonic Sensing: Fundamentals and its Applications to Nondestructive Evaluation

  • Ikuo Ihara


This chapter provides the fundamentals of ultrasonic sensing techniques that can be used in the various fields of engineering and science. It also includes some advanced techniques used for non-destructive evaluations. At first, basic characteristics of ultrasonic waves propagating in media are described briefly. Secondly, basic concepts for measuring ultrasonic waves are described with introductory subjects of ultrasonic transducers that generate and receive ultrasonic waves. Finally, specialized results demonstrating the capabilities of using a buffer rod sensor for ultrasonic monitoring at high temperatures are presented.


Ultrasonic sensing transducers nondestructive evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Kolsky (1963) Stress Waves in Solids, Dover Publications, New York.Google Scholar
  2. 2.
    W. C. Elmore and M. A. Heald (1985) Physics of Waves, Dover Publications, New York.Google Scholar
  3. 3.
    D. Royer and E. Dieulesaint (2000) Elastic Waves in Solids I & II, Springer-Verlag, Berlin.Google Scholar
  4. 4.
    L. M. Brekhovskikh (1980). Waves in Layered Media 2nd Edition, Academic press, New York.MATHGoogle Scholar
  5. 5.
    J. D. Achenbach (1990) Wave Propagation in Elastic Solids, Elsevier Science Publisher, Amsterdam.Google Scholar
  6. 6.
    B. A. Auld (1990) Acoustic Fields and Waves in Solids 2nd Edition Vol. 1 & 2, Krieger Publishing, Florida.Google Scholar
  7. 7.
    J. L. Rose (1999) Ultrasonic Waves in Solid Media, Cambridge University Press, Cambridge.Google Scholar
  8. 8.
    G. S. Kino (1987) Acoustic Waves Devices, Imaging and Analog Signal Processing, Prentice-Holl, New Jersey.Google Scholar
  9. 9.
    R. N. Thurston and A. D. Pierce (Editors) (1999) Ultrasonic Instruments and Devices I & II, Academic Press, San Diego.Google Scholar
  10. 10.
    A. Arnau (2004) Piezoelectric Transducers and Applications, Springer-Verlag, Berlin.Google Scholar
  11. 11.
    E. P. Papadakis (Editor) (1999) Ultrasonic Instruments & Devices, Academic Press, San Diego.Google Scholar
  12. 12.
    R. N. Thurston and A. D. Pierce (Editors) (1990) Ultrasonic Measurement Methods, Academic Press, San Diego.Google Scholar
  13. 13.
    J. Krautkramer and H. Krautkramer (1990) Ultrasonic Testing of Materials 4th Revised Edition, Springer-Verlag, Berlin.Google Scholar
  14. 14.
    A. Briggs (1992) Acoustic Microscopy, Clarendon Press, Oxford.Google Scholar
  15. 15.
    M. Levy, H. E. Bass, and R. Stern (Editors) (2001) Modern Acoustical Techniques for the Measurement of Mechanical Properties, Academic Press, San Diego.Google Scholar
  16. 16.
    T. Kundu (Editor) (2004) Ultrasonic Nondestructive Evaluation, CRC Press, Boca Raton.Google Scholar
  17. 17.
    D. R. Raichel (2006) The Science and Applications of Acoustics 2nd Edition, Springer Science+Business Media, New York.Google Scholar
  18. 18.
    L. W. Schmerr Jr. and S.-J. Song (2007) Ultrasonic Nondestructive Evaluation Systems, Springer Science+Business Media, New York.Google Scholar
  19. 19.
    B. M. Lempriere (2002) Ultrasound and Elastic Waves: Frequently Asked Questions, Academic Press, San Diego.Google Scholar
  20. 20.
    K. F. Graff (1991) Wave Motion in Elastic Solid, Dover Publications, New York.Google Scholar
  21. 21.
    J.-P. Monchalin (2007) Laser-Ultrasonics: Principles and Industrial Applications, in Ultrasonic and advanced Methods for Nondestructive Testing and Materials Characterization, chapter 4, edited by C. F. Chen, World Scientific, New Jersey, pp. 79–115.Google Scholar
  22. 22.
    H. M. Frost (1979) Electromagnetic-Ultrasonic Transducers: Principles, Practice, and Applications: Physical Acoustics XIV, edited by W. P. Mason and R. N Thurston, Academic Press, New York, pp. 179–270.Google Scholar
  23. 23.
    M. Hirao and H. Ogi (2003) EMATS for Science and Industry, Kluwer Academic Publishers, Boston.Google Scholar
  24. 24.
    D. W. Schindel, D. A. Hutchins, L. Zou, and M. Sayer (1995) The Design and Characterization of Micromachined Air-Coupled Capacitance Transducers, IEEE Trans. Ultrason. Ferroelec. Freq. Control. UFFC-42: 42–50.Google Scholar
  25. 25.
    D. D. Sukmana and I. Ihara (2007) Quantitative Evaluation of Two Kinds of Surface Roughness Parameters Using Air-Coupled Ultrasound, Jpn J. App. Phys., 46(5B): 4508–4513.CrossRefGoogle Scholar
  26. 26.
    C.-K. Jen,, J. G. Legoux, and L. Parent (2000) Experimental Evaluation of Clad Metallic Buffer Rods for High Temperature Ultrasonic Measurements, NDT & E International 33, pp. 145–153.CrossRefGoogle Scholar
  27. 27.
    C.-K. Jen, D. R. França, and Z. Sun, and I. Ihara (2001) Clad Polymer Buffer Rods for Polymer Process Monitoring, Ultrasonics, 39(2): 81–89.CrossRefGoogle Scholar
  28. 28.
    I. Ihara, C.-K. Jen, and D. R. França (1998) Materials Evaluation Using Long Clad Buffer Rods, Proc. IEEE Int. Ultrasonics Symp., Sendai, pp. 803–809.Google Scholar
  29. 29.
    I. Ihara, C.-K. Jen, and D. R. França (2000) Ultrasonic Imaging, Particle Detection and V(z) Measurements in Molten Zinc Using Focused Clad Buffer Rods, Rev. Sci. Instrum, 71(9): 3579–3586.CrossRefGoogle Scholar
  30. 30.
    I. Ihara, H. Aso, and D. Burhan (2004) In-situ Observation of Alumina Particles in Molten Aluminum Using a Focused Ultrasonic Sensor, JSME International Journal, 47(3): 280–286.CrossRefGoogle Scholar
  31. 31.
    I. Ihara, D. Burhan, and Y. Seda (2005) In situ Monitoring of Solid-Liquid Interface of Aluminum Alloy using a High Temperature Ultrasonic Sensor, Jpn J. App. Phys., Vol.44(6B): 4370–7373.CrossRefGoogle Scholar
  32. 32.
    M. Takahashi and I. Ihara (2008) Ultrasonic Monitoring of Internal Temperature Distribution in a Heated Material, Jpn J. App. Phys., Vol.47(5B): 3894–3898.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ikuo Ihara
    • 1
  1. 1.Department of Mechanical EngineeringNagaoka University of TechnologyNagaokaJapan

Personalised recommendations