Constructing Good Covering Codes for Applications in Steganography

  • Jürgen Bierbrauer
  • Jessica Fridrich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4920)

Abstract

Application of covering codes to data embedding improves embedding efficiency and security of steganographic schemes. In this paper, we describe several familes of covering codes constructed using the blockwise direct sum of factorizations. We show that non-linear constructions offer better performance compared to simple linear covering codes currently used by steganographers. Implementation details are given for a selected code family.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bierbrauer, J.: Introduction to Coding Theory. Chapman and Hall, CRC Press (2005)Google Scholar
  2. 2.
    Bierbrauer, J.: Crandall’s problem (unpublished, 1998), available from, http://www.ws.binghamton.edu/fridrich/covcodes.pdf
  3. 3.
    Bierbrauer, J.: Nordstrom-Robinson code and A 7-geometry. Finite Fields and Their Applications 13, 158–170 (2007)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Cachin, C.: An information-theoretic model for steganography. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 306–318. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Carnielli, W.A.: On covering and coloring problems for rook domains. Discrete Mathematics 57, 9–16 (1985)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Cohen, G., Honkala, I., Litsyn, S., Lobstein, A.: Covering Codes. North Holland, Amsterdam (1997)MATHGoogle Scholar
  7. 7.
    Crandall, R.: Some notes on steganography. Posted on steganography mailing list (1998), http://os.inf.tu-dresden.de/~westfeld/crandall.pdf
  8. 8.
    Davydov, A.A.: New constructions of covering codes. Designs, Codes and Cryptography 22, 305–316 (2001)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Davydov, A.A., Faina, G., Marcugini, S., Pambianco, F.: Locally optimal (nonshortening) linear covering codes and minimal saturating sets in projective spaces. IEEE Transactions on Information Theory 51, 4378–4387 (2005)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Davydov, A.A., Marcugini, S., Pambianco, F.: Minimal 1 -saturating sets and complete caps in binary projective spaces. Journal of Combinatorial Theory A 113, 647–663 (2006)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Etzion, T., Greenberg, G.: Constructions for perfect mixed codes and other covering codes. IEEE Transactions on Information Theory 39, 209–214 (1993)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Etzion, T., Mounits, B.: Quasi-perfect codes with small distance. IEEE Transactions on Information Theory 51, 3938–3946 (2005)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Fridrich, J., Goljan, M., Soukal, D.: Efficient Wet Paper Codes. In: Barni, M., Herrera-Joancomartí, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp. 204–218. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Fridrich, J.: Feature-Based Steganalysis for JPEG Images and its Implications for Future Design of Steganographic Schemes. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 67–81. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Fridrich, J., Goljan, M., Du, R.: Steganalysis Based on JPEG Compatibility. In: Tescher, et al. (eds.) Proc. SPIE Multimedia Systems and Applications IV, SPIE, vol. 4518, Denver, CO. pp. 275–280 (August 2001)Google Scholar
  16. 16.
    Gabidulin, E.M., Davydov, A.A., Tombak, I.M.: Codes with covering radius 2 and other new covering codes. IEEE Transactions on Information Theory 37, 219–224 (1991)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Galand, F., Kabatiansky, G.: Information hiding by coverings. In: Proceedings of the IEEE Information Theory Workshop 2004, pp. 151–154 (2004)Google Scholar
  18. 18.
    Goppa, V.D.: Codes on algebraic curves. Soviet Math. Doklady 24, 170–172 (1981)MATHGoogle Scholar
  19. 19.
    Hammons Jr, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The Z 4-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Transactions on Information Theory 40, 301–319 (1994)CrossRefMATHGoogle Scholar
  20. 20.
    Honkala, I.S.: On (k,t)-subnormal covering codes. IEEE Transactions on Information Theory 37, 1203–1206 (1991)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    Kaikkonen, M.K., Rosendahl, P.: New covering codes from an ADS-like construction. IEEE Transactions on Information Theory 49, 1809–1812 (2003)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Ker, A.: A General Framework for Structural Analysis of LSB Replacement. In: Barni, M., Herrera-Joancomartí, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp. 296–311. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Nordstrom, A.W., Robinson, J.P.: An optimum nonlinear code. Information and Control 11, 613–616 (1967)CrossRefMATHGoogle Scholar
  24. 24.
    Östergå, P.: A coloring problem in Hamming spaces. European Journal of Combinatorics 18, 303–309 (1997)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Preparata, F.P.: A class of optimum nonlinear double-error-correcting codes. Information and Control 13, 378–400 (1968)CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Provos, N.: Defending Against Statistical Steganalysis. In: 10th USENIX Security Symposium, Washington, DC (2001)Google Scholar
  27. 27.
    Sallee, P.: Model Based Steganography. In: Kalker, T., Cox, I., Ro, Y.M. (eds.) IWDW 2003. LNCS, vol. 2939, pp. 154–167. Springer, Heidelberg (2004)Google Scholar
  28. 28.
    Simmons, G.J.: The Prisoners’ Problem and the Subliminal Channel. In: Chaum, D. (ed.) Advances in Cryptology: Proceedings of Crypto 1983, pp. 51–67. Plenum Press (1984)Google Scholar
  29. 29.
    Stinson, D.R.: Resilient functions and large sets of orthogonal arrays. Congressus Numerantium 92, 105–110 (1993)MathSciNetGoogle Scholar
  30. 30.
    Struik, R.: Covering Codes, Ph.D. dissertation, Eindhoven (1994)Google Scholar
  31. 31.
    Wan, Z.X.: Quaternary codes. World Scientific, Singapore (1997)MATHGoogle Scholar
  32. 32.
    Westfeld, A.: High Capacity Despite Better Steganalysis (F5–A Steganographic Algorithm). In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 289–302. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  33. 33.
    Zelinka, B.: On k-domatic numbers of graphs. Czechoslovak Math. Journal 33, 309–311 (1983)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jürgen Bierbrauer
    • 1
  • Jessica Fridrich
    • 2
  1. 1.Department of Mathematical SciencesMichigan Technological UniversityHOUGHTON (MI)USA
  2. 2.Department of Electrical and Computer EngineeringBinghamton UniversityBINGHAMTON (NY) 

Personalised recommendations