Parallel and Adaptive Simulation of Fuel Cells in 3d

  • R. Klöfkorn
  • D. Kröner
  • M. Ohlberger
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design book series (NNFM, volume 101)


In this paper we present numerical simulations for PEM (Polymer Electrolyte Membrane) Fuel Cells. Hereby, we focus on the simulation done in 3d using modern techniques like higher order discretizations using Discontinuous Galerkin methods, local grid adaptivity, and parallelization including dynamic load-balancing. As a test case for the developed software we simulate the two-phase flow and the transport of species in the cathodic gas diffusion layer of the Fuel Cell. Therefore, from the detailed model presented in [4] we derive a simplified Model Problem presented in Section [2]. In Section [3] one finds a few notes on the discretization schemes that were used for the simulation including comments on adaptation and parallelization. In Section [4] the results of an adaptive, parallel simulation in 3d are presented.


Fuel Cell Discontinuous Galerkin Method Error Indicator Saturation Equation Adaptive Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Steinkamp, K., Schumacher, J.O., Goldsmith, F., Ohlberger, M., Ziegler, C.: A non-isothermal PEM fuel cell model including two water transport mechanisms in the membrane. In: Preprint series of the Mathematisches Institut of the Universität Freiburg (2007)Google Scholar
  5. 5.
    Bastian, P., Blatt, M.: The Iterative Template Solver Library. In: Kågström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds.) PARA 2006. LNCS, vol. 4699, Springer, Heidelberg (2007)Google Scholar
  6. 6.
    Burri, A., Dedner, A., Diehl, D., Klöfkorn, R., Ohlberger, M.: A general object oriented framework for discretizing nonlinear evolution equations. In: Shokin, Y., Resch, M., Danaev, N., Orunkhanov, M., Shokina, N. (eds.) Advances in High Performance Computing and Computational Sciences. 1st Kazakh-German Advanced Research Workshop, Almaty, Kazakhstan, September 25 – October 1, 2005. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol. 93. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Schmidt, A., Siebert, K.G.: Design of Adaptive Finite Element Software – The Finite Element Toolbox ALBERTA. Springer, New York (2005)zbMATHGoogle Scholar
  8. 8.
    Dedner, A., Rohde, C., Schupp, B., Wesenberg, M.: Comput Visual Sci 7, 79–96 (2004)Google Scholar
  9. 9.
    Bastian, P., Riviere, B.: Discontinuous galerkin methods for two-phase flow in porous media. In: Technical reports of the IWR (SFB 359), Heidelberg University (2004)Google Scholar
  10. 10.
    Ohlberger, M., Rohde, C.: IMA J. Numer. Anal. 22 (2), 253–280 (2002)Google Scholar
  11. 11.
    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: SIAM. J. Numer. Anal. 39 (5) (1749)–1779 (2002)Google Scholar
  12. 12.
    Cockburn, B., Shu, C.W.: SIAM. J. Numer. Anal. 35 (6), 2440–2463 (1998)Google Scholar
  13. 13.
    Helmig, R.: Multiphase Flow and Transport Processes in the Subsurface: A contribution to the modeling of hydrosystems. Springer, New York (1997)Google Scholar
  14. 14.
    Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuss, N., Rentz-Reichert, H., Wieners, C.: Comput. Visual Sci. 1, 27–40 (1997)Google Scholar
  15. 15.
    Corapcioglu, M.Y., Baehr, A.: Water Resour. Res. 23 (1), 191–200 (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • R. Klöfkorn
    • 1
  • D. Kröner
    • 1
  • M. Ohlberger
    • 2
  1. 1.Section of Applied MathematicsUniversity of FreiburgFreiburg i. Br.Germany
  2. 2.Institute for Numerical and Applied MathematicsUniversity of MünsterMünsterGermany

Personalised recommendations