Advertisement

Contention-Based Polling Efficiency in Broadband Wireless Networks

  • Sergey D. Andreev
  • Andrey M. Turlikov
  • Alexey V. Vinel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5055)

Abstract

This paper addresses the performance of the contention-based polling techniques at the bandwidth reservation stage of IEEE 802.16 standard. A general proposition is proved, which establishes that the grouping of users in the random multiple access system does not change its capacity. Broadcast and multicast polling mechanisms are then considered, for which the throughput and the rate of the truncated binary exponential backoff algorithm are calculated for the lossy and the lossless system types, respectively. It is shown, that subject to proper optimization the performance of the aforementioned algorithm is the same for both system types. The efficiency of the symmetric user grouping is finally studied, which demonstrates that a negligible performance gain may be achieved for the cost of the increased IEEE 802.16 overhead.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IEEE Std 802.16e-2005, Piscataway, NJ, USA (December 2005)Google Scholar
  2. 2.
    Rubin, I.: Access-control disciplines for multi-access communication channels: Reservation and tdma schemes. IEEE Transactions on Information Theory 25(5), 516–536 (1979)zbMATHCrossRefGoogle Scholar
  3. 3.
    Aldous, D.: Ultimate instability of exponential back-off protocol for acknowledgment based transmission control of random access communication channels. IEEE Transactions on Information Theory 33(2), 219–233 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Goodman, J., Greenberg, A., Madras, N., March, P.: Stability of binary exponential backoff. Journal of the ACM 35(3), 579–602 (1988)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Paterakis, M., Georgiadis, L., Papantoni-Kazakos, P.: On the relation between the finite and the infinite population models for a class of raa’s. IEEE Transactions on Communications 35, 1239–1240 (1987)CrossRefGoogle Scholar
  6. 6.
    Chlebus, B.: Randomized Communication in Radio Networks. In: Pardalos, P., Rajasekaran, S., Reif, J., Rolim, J.(eds.), Handbook of Randomized Computing, vol. 1, pp. 401–456 (2001)Google Scholar
  7. 7.
    Tsybakov, B.: Survey of ussr contributions to random multiple-access communications. IEEE Transactions on Information Theory 31(2), 143–165 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Tsybakov, B., Mikhailov, V.: Free synchronous packet access in a broadcast channel with feedback. Problems of Information Transmission 14(4), 259–280 (1978)MathSciNetGoogle Scholar
  9. 9.
    Bertsekas, D., Gallager, R.: Data Networks. Prentice-Hall, Englewood Cliffs (1992)zbMATHGoogle Scholar
  10. 10.
    Song, N., Kwak, B., Miller, L.: On the stability of exponential backoff. Journal Research of NIST 108, 289–297 (2003)Google Scholar
  11. 11.
    Bianchi, G.: Performance analysis of the ieee 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications 18(3), 535–547 (2000)CrossRefGoogle Scholar
  12. 12.
    Lin, L., Jia, W., Lu, W.: Performance analysis of ieee 802.16 multicast and broadcast polling based bandwidth request. In: IEEE Wireless Communications and Networking Conference, vol. 1, pp. 1854–1859 (2007)Google Scholar
  13. 13.
    Alanen, O.: Multicast polling and efficient voip connections in ieee 802.16 networks. In: 10th ACM Symposium on Modeling, analysis, and simulation of wireless and mobile systems, vol. 1, pp. 289–295 (2007)Google Scholar
  14. 14.
    Tsybakov, B., Likhanov, N.: Upper bound on the capacity of a random multiple-access system. Problems of Information Transmission 23(3), 224–236 (1987)MathSciNetGoogle Scholar
  15. 15.
    Turlikov, A., Vinel, A.: Capacity estimation of centralized reservation-based random multiple-access system. In: Symposium on Problems of Redundancy in Information and Control Systems, vol. 1, pp. 154–160 (2007)Google Scholar
  16. 16.
    Tsybakov, B.: One stochastic process and its application to multiple access in supercritical region. IEEE Transactions on Information Theory 47(4), 1561–1569 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Tsybakov, B., Mikhailov, V.: Random multiple packet access: Part-and-try algorithm. Problems of Information Transmission 16(4), 305–317 (1980)MathSciNetGoogle Scholar
  18. 18.
    Tsybakov, B., Berkovskii, M.: Multiple access with reservation. Problems of Information Transmission 16(1), 35–54 (1980)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Vinel, A., Zhang, Y., Ni, Q., Lyakhov, A.: Efficient request mechanisms usage in ieee 802.16. In: IEEE Global Telecommunications Conference, vol. 1, pp. 1–5 (2006)Google Scholar
  20. 20.
    Abramson, N.: The throughput of packet broadcasting channels. IEEE Transactions on Communications 25(1), 117–128 (1977)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Vinel, A., Zhang, Y., Lott, M., Tiurlikov, A.: Performance analysis of the random access in ieee 802.16. In: IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 3, pp. 1596–1600 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sergey D. Andreev
    • 1
  • Andrey M. Turlikov
    • 1
  • Alexey V. Vinel
    • 2
  1. 1.St. Petersburg State University of Aerospace InstrumentationSt. PetersburgRussia
  2. 2.St. Petersburg State University of Information Technologies, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations