Advertisement

Mobilization of Bone Marrow-Derived Progenitors

  • J. -P. Lévesque
  • I. G. Winkler
  • S. R. Larsen
  • J. E. J. Rasko
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 180)

Abstract

Bone marrow (BM) is a source of various stem and progenitor cells in the adult, and it is able to regenerate a variety of tissues following transplantation. In the 1970s the first BM stem cells identified were hematopoietic stem cells (HSCs). HSCs have the potential to differentiate into all myeloid (including erythroid) and lymphoid cell lineages in vitro and reconstitute the entire hematopoietic and immune systems following transplantation in vivo. More recently, nonhematopoietic stem and progenitor cells have been identified that can differentiate into other cell types such as endothelial progenitor cells (EPCs), contributing to the neovascularization of tumors as well as ischemic tissues, and mesenchymal stem cells (MSCs), which are able to differentiate into many cells of ectodermal, endodermal, and mesodermal origins in vitro as well as in vivo. Following adequate stimulation, stem and progenitor cells can be forced out of the BM to circulate into the peripheral blood, a phenomenon called “mobilization.” This chapter reviews the molecular mechanisms behind mobilization and how these have led to the various strategies employed to mobilize BM-derived stem and progenitor cells in experimental and clinical settings. Mobilization of HSCs will be reviewed first, as it has been best-explored—being used extensively in clinics to transplant large numbers of HSCs to rescue cancer patients requiring hematopoietic reconstitution—and provides a paradigm that can be generalized to the mobilization of other types of BM-derived stem and progenitor cells in order to repair other tissues.

Keywords

Mobilization Hematopoietic stem cells Endothelial progenitor cells Mesenchymal stem cells Transplantation Tissue repair 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abkowitz JL, Robinson AE, Kale S, et al (2003) Mobilization of hematopoietic stem cells during homeostasis and after cytokine exposure. Blood 102:1249–1253PubMedCrossRefGoogle Scholar
  2. Adams GB, Chabner KT, Alley IR, et al (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439:599–603PubMedCrossRefGoogle Scholar
  3. Aicher A, Heeschen C, Mildner-Rihm C, et al (2003) Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9:1370–1376PubMedCrossRefGoogle Scholar
  4. Akashi K, Traver D, Miyamoto T, et al (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193–197PubMedCrossRefGoogle Scholar
  5. Arai F, Hirao A, Ohmura M, et al (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161PubMedCrossRefGoogle Scholar
  6. Asahara T, Murohara T, Sullivan A, et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–966PubMedCrossRefGoogle Scholar
  7. Asahara T, Takahashi T, Masuda H, et al (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18:3964–3972PubMedCrossRefGoogle Scholar
  8. Avecilla ST, Hattori K, Heissig B, et al (2004) Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10:64–71PubMedCrossRefGoogle Scholar
  9. Balsam LB, Wagers AJ, Christensen JL, et al (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673PubMedCrossRefGoogle Scholar
  10. Barrett AJ, Longhurst P, Sneath P, et al (1978) Mobilization of CFU-C by exercise and ACTH induced stress in man. Exp Hematol 6:590–594PubMedGoogle Scholar
  11. Barry F, Boynton R, Murphy M, et al (2001) The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem Biophys Res Commun 289:519–524PubMedCrossRefGoogle Scholar
  12. Barry FP, Boynton RE, Haynesworth S, et al (1999) The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem Biophys Res Commun 265:134–139PubMedCrossRefGoogle Scholar
  13. Bensaid W, Triffitt JT, Blanchat C, et al (2003) A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 24:2497–2502PubMedCrossRefGoogle Scholar
  14. Bensidhoum M, Chapel A, Francois S, et al (2004) Homing of in vitro expanded Stro-1 or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood 103:3313–3319PubMedCrossRefGoogle Scholar
  15. Bensinger W, Appelbaum F, Rowley S, et al (1995) Factors that influence collection and engraftment of autologous peripheral-blood stem cells. J Clin Oncol 13:2547–2555PubMedGoogle Scholar
  16. Berry MF, Engler AJ, Woo YJ, et al (2006) Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 290:H2196–H2203PubMedCrossRefGoogle Scholar
  17. Bieback K, Kern S, Kluter H, et al (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22:625–634PubMedCrossRefGoogle Scholar
  18. Bonsignore MR, Morici G, Santoro A, et al (2002) Circulating hematopoietic progenitor cells in runners. J Appl Physiol 93:1691–1697PubMedGoogle Scholar
  19. Brown RA, Adkins D, Goodnough LT, et al (1997) Factors that influence the collection and engraftment of allogeneic peripheral-blood stem cells in patients with hematologic malignancies. J Clin Oncol 15:3067–3074PubMedGoogle Scholar
  20. Broxmeyer HE, Orschell CM, Clapp DW, et al (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201:1307–1318PubMedCrossRefGoogle Scholar
  21. Calvi LM, Adams GB, Weibrecht KW, et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846PubMedCrossRefGoogle Scholar
  22. Campagnoli C, Roberts IA, Kumar S, et al (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–2402PubMedCrossRefGoogle Scholar
  23. Carlesso N, Aster JC, Sklar J, et al (1999) Notch1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics. Blood 93:838–848PubMedGoogle Scholar
  24. Carter CRD, Whitmore KM, Thorpe R (2004) The significance of carbohydrates on G-CSF: differential sensitivity of G-CSFs to human neutrophil elastase degradation. J Leukoc Biol 75:515–522PubMedCrossRefGoogle Scholar
  25. Cashman J, Clark-Lewis I, Eaves A, et al (2002) Stromal-derived factor 1 inhibits the cycling of very primitive human hematopoietic cells in vitro and in NOD/SCID mice. Blood 99:792–799PubMedCrossRefGoogle Scholar
  26. Chan J, O’Donoghue K, de la Fuente J, et al (2005) Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem Cells 23:93–102PubMedCrossRefGoogle Scholar
  27. Chen X, Xu HB, Wan C, et al (2006) Bioreactor expansion of human adult bone marrow derived mesenchymal stem cells (MSCs). Stem Cells 24:2052–2059PubMedCrossRefGoogle Scholar
  28. Cline MJ, Golde DW (1977) Mobilization of hematopoietic stem cells (CFU-C) into the peripheral blood of man by endotoxin. Exp Hematol 5:186–190PubMedGoogle Scholar
  29. de Haan G, Ausema A, Wilkens M, et al (2000) Efficient mobilization of haematopoietic progenitors after a single injection of pegylated recombinant human granulocyte colony-stimulating factor in mouse strains with distinct marrow-cell pool sizes. Br J Haematol 110:638–646PubMedCrossRefGoogle Scholar
  30. De Palma M, Venneri MA, Galli R, et al (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226PubMedCrossRefGoogle Scholar
  31. Demirer T, Bensinger WI (1995) Optimization of peripheral blood stem cell collection. Curr Opin Hematol 2:219–226PubMedCrossRefGoogle Scholar
  32. Deng YB, Liu XG, Liu ZG, et al (2006) Implantation of BM mesenchymal stem cells into injured spinal cord elicits de novo neurogenesis and functional recovery: evidence from a study in rhesus monkeys. Cytotherapy 8:210–214PubMedCrossRefGoogle Scholar
  33. Dennis JE, Charbord P (2002) Origin and differentiation of human and murine stroma. Stem Cells 20:205–214PubMedCrossRefGoogle Scholar
  34. Devine SM, Peter S, Martin BJ, et al (2001) Mesenchymal stem cells: stealth and suppression. Cancer J 7[Suppl 2]:S76–S82PubMedGoogle Scholar
  35. Devine SM, Flomenberg N, Vesole DH, et al (2004) Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin’s lymphoma. J Clin Oncol 22:1095–1102PubMedCrossRefGoogle Scholar
  36. El Ouriaghli F, Fujiwara H, Melenhorst JJ, et al (2003) Neutrophil elastase enzymatically antagonizes the in vitro action of G-CSF: implications for the regulation of granulopoiesis. Blood 101:1752–1758PubMedCrossRefGoogle Scholar
  37. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242PubMedCrossRefGoogle Scholar
  38. Eto T, Winkler I, Purton LE, et al (2005) Contrasting effects of P-selectin and E-selectin on the differentiation of murine hematopoietic progenitor cells. Exp Hematol 33:232–242PubMedCrossRefGoogle Scholar
  39. Fernandez M, Simon V, Herrera G, et al (1997) Detection of stromal cells in peripheral blood progenitor cell collections from breast cancer patients. Bone Marrow Transplant 20:265–271PubMedCrossRefGoogle Scholar
  40. Flomenberg N, Devine SM, DiPersio JF, et al (2005) The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood 106:1867–1874PubMedCrossRefGoogle Scholar
  41. Fuchs E, Tumbar T, Guasch G (2004) Socializing with the neighbors: stem cells and their niche. Cell 116:769–778PubMedCrossRefGoogle Scholar
  42. Glaspy JA, Shpall EJ, LeMaistre CF, et al (1997) Peripheral blood progenitor cell mobilization using stem cell factor in combination with filgrastim in breast cancer patients. Blood 90:2939–2951PubMedGoogle Scholar
  43. Gotherstrom C, Ringden O, Tammik C, et al (2004) Immunologic properties of human fetal mesenchymal stem cells. Am J Obstet Gynecol 190:239–245PubMedCrossRefGoogle Scholar
  44. Gronthos S, Graves SE, Ohta S, et al (1994) The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood 84:4164–4173PubMedGoogle Scholar
  45. Grunewald M, Avraham I, Dor Y, et al (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124:175–189PubMedCrossRefGoogle Scholar
  46. Gutierrez-Rodriguez M, Reyes-Maldonado E, Mayani H (2000) Characterization of the adherent cells developed in Dexter-type long-term cultures from human umbilical cord blood. Stem Cells 18:46–52PubMedCrossRefGoogle Scholar
  47. Hattori K, Dias S, Heissig B, et al (2001a) Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 193:1005–1014PubMedCrossRefGoogle Scholar
  48. Hattori K, Heissig B, Tashiro K, et al (2001b) Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 97:3354–3360PubMedCrossRefGoogle Scholar
  49. Haynesworth SE, Baber MA, Caplan AI (1992a) Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13:69–80PubMedCrossRefGoogle Scholar
  50. Haynesworth SE, Goshima J, Goldberg VM, et al (1992b) Characterization of cells with osteogenic potential from human marrow. Bone 13:81–88PubMedCrossRefGoogle Scholar
  51. Heeschen C, Aicher A, Lehmann R, et al (2003) Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102:1340–1346PubMedCrossRefGoogle Scholar
  52. Heissig B, Hattori K, Dias S, et al (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109:625–637PubMedCrossRefGoogle Scholar
  53. Hendrix CW, Flexner C, MacFarland RT, et al (2000) Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. Antimicrob Agents Chemother 44:1667–1673PubMedCrossRefGoogle Scholar
  54. Hendrix CW, Collier AC, Lederman MM, et al (2004) Safety, pharmacokinetics, and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-1 infection. J Acquir Immune Defic Syndr 37:1253–1262PubMedCrossRefGoogle Scholar
  55. Horwitz EM, Le Blanc K, Dominici M, et al (2005) Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7:393–395PubMedCrossRefGoogle Scholar
  56. Hosokawa K, Arai F, Suda T (2005) N-cadherin induces hematopoietic stem cells in a quiescent state in the bone marrow niche. Blood 106:141a (Abstr)CrossRefGoogle Scholar
  57. Ingram DA, Caplice NM, Yoder MC (2005) Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood 106:1525–1531PubMedCrossRefGoogle Scholar
  58. Jacobsen K, Kravitz J, Kincade PW, et al (1996) Adhesion receptors on bone marrow stromal cells: in vivo expression of vascular cell adhesion molecule-1 by reticular cells and sinusoidal endothelium in normal and gamma-irradiated mice. Blood 87:73–82PubMedGoogle Scholar
  59. Jin DK, Shido K, Kopp HG, et al (2006) Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 12:557–567PubMedCrossRefGoogle Scholar
  60. Johnstone B, Hering TM, Caplan AI, et al (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265–272PubMedCrossRefGoogle Scholar
  61. Kassis I, Zangi L, Rivkin R, et al (2006) Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads. Bone Marrow Transplant 37:967–976PubMedCrossRefGoogle Scholar
  62. Katayama Y, Battista M, Kao WM, et al (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124:407–421PubMedCrossRefGoogle Scholar
  63. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121PubMedCrossRefGoogle Scholar
  64. King AG, Horowitz D, Dillon SB, et al (2001) Rapid mobilization of murine hematopoietic stem cells with enhanced engraftment properties and evaluation of hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-251353, a specific truncated form of the human CXC chemokine GRObeta. Blood 97:1534–1542PubMedCrossRefGoogle Scholar
  65. Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–672PubMedCrossRefGoogle Scholar
  66. Kondo M, Wagers AJ, Manz MG, et al (2003) Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 21:759–806PubMedCrossRefGoogle Scholar
  67. Kopp HG, Ramos CA, Rafii S (2006) Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue. Curr Opin Hematol 13:175–181PubMedCrossRefGoogle Scholar
  68. Korbling M, Anderlini P (2001) Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter? Blood 98:2900–2908PubMedCrossRefGoogle Scholar
  69. Krieger MS, Schiller G, Berenson JR, et al (1999) Collection of peripheral blood progenitor cells (PBPC) based on a rising WBC and platelet count significantly increases the number of CD34+ cells. Bone Marrow Transplant 24:25–28PubMedCrossRefGoogle Scholar
  70. Kuznetsov SA, Mankani MH, Gronthos S, et al (2001) Circulating skeletal stem cells. J Cell Biol 153:1133–1140PubMedCrossRefGoogle Scholar
  71. Lataillade JJ, Clay D, Dupuy C, et al (2000) Chemokine SDF-1 enhances circulating CD34+ cell proliferation in synergy with cytokines: possible role in progenitor survival. Blood 95:756–768PubMedGoogle Scholar
  72. Lazarus HM, Haynesworth SE, Gerson SL, et al (1997) Human bone marrow-derived mesenchymal (stromal) progenitor cells (MPCs) cannot be recovered from peripheral blood progenitor cell collections. J Hematother 6:447–455PubMedGoogle Scholar
  73. Lee OK, Kuo TK, Chen WM, et al (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675PubMedCrossRefGoogle Scholar
  74. Lévesque JP, Zannettino AC, Pudney M, et al (1999) PSGL-1-mediated adhesion of human hematopoietic progenitors to P-selectin results in suppression of hematopoiesis. Immunity 11:369–378PubMedCrossRefGoogle Scholar
  75. Lévesque JP, Takamatsu Y, Nilsson SK, et al (2001) Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98:1289–1297PubMedCrossRefGoogle Scholar
  76. Lévesque JP, Hendy J, Takamatsu Y, et al (2002) Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol 30:430–439CrossRefGoogle Scholar
  77. Lévesque JP, Hendy J, Takamatsu Y, et al (2003a) Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 111:187–196PubMedCrossRefGoogle Scholar
  78. Lévesque JP, Hendy J, Winkler IG, et al (2003b) Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Exp Hematol 31:109–117PubMedCrossRefGoogle Scholar
  79. Lévesque JP, Liu F, Simmons PJ, et al (2004) Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 104:65–72PubMedCrossRefGoogle Scholar
  80. Lévesque JP, Winkler IG, Sims N, et al (2005) The inhibition of the osteoblast niche during hematopoietic stem cell mobilization is an indirect effect involving mature bone marrow leukocytes, IL6 and soluble IL6 receptor. Blood 106:557a [abstract]Google Scholar
  81. Liles WC, Broxmeyer HE, Rodger E, et al (2003) Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 102:2728–2730PubMedCrossRefGoogle Scholar
  82. Lin Y, Weisdorf DJ, Solovey A, et al (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105:71–77PubMedCrossRefGoogle Scholar
  83. Liu F, Poursine-Laurent J, Link DC (1997) The granulocyte colony-stimulating factor receptor is required for the mobilization of murine hematopoietic progenitors into peripheral blood by cyclophosphamide or interleukin-8 but not flt-3 ligand. Blood 90:2522–2528PubMedGoogle Scholar
  84. Liu F, Poursine-Laurent J, Link DC (2000) Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood 95:3025–3031PubMedGoogle Scholar
  85. Lord BI, Testa NG, Hendry JH (1975) The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 46:65–72PubMedGoogle Scholar
  86. Minatoguchi S, Takemura G, Chen XH, et al (2004) Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation 109:2572–2580PubMedCrossRefGoogle Scholar
  87. Molineux G, Pojda Z, Dexter TM (1990) A comparison of hematopoiesis in normal and splenectomized mice treated with granulocyte colony-stimulating factor. Blood 75:563–569PubMedGoogle Scholar
  88. Molineux G, Migdalska A, Szmitkowski M, et al (1991) The effects on hematopoiesis of recombinant stem cell factor (ligand for c-kit) administered in vivo to mice either alone or in combination with granulocyte colony-stimulating factor. Blood 78:961–966PubMedGoogle Scholar
  89. Molineux G, McCrea C, Yan XQ, et al (1997) Flt-3 ligand synergizes with granulocyte colonystimulating factor to increase neutrophil numbers and to mobilize peripheral blood stem cells with long-term repopulating potential. Blood 89:3998–4004PubMedGoogle Scholar
  90. Morris ES, MacDonald KPA, Rowe V, et al (2004) Donor treatment with pegylated G-CSF augments the generation of IL-10-producing regulatory T cells and promotes transplantation tolerance. Blood 103:3573–3581PubMedCrossRefGoogle Scholar
  91. Morris ES, MacDonald KPA, Rowe V, et al (2005) NKT cell-dependent leukemia eradication following stem cell mobilization with potent G-CSF analogs. J Clin Invest 115:3093–3103PubMedCrossRefGoogle Scholar
  92. Morrison SJ, Weissman IL (1994) The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1:661–673PubMedCrossRefGoogle Scholar
  93. Nagasawa T (2006) Microenvironmental niches in the bone marrow required for B-cell development. Nat Rev Immunol 6:107–116PubMedCrossRefGoogle Scholar
  94. Nakamura Y, Tajima F, Ishiga K, et al (2004) Soluble c-kit receptor mobilizes hematopoietic stem cells to peripheral blood in mice. Exp Hematol 32:390–396PubMedCrossRefGoogle Scholar
  95. Nilsson SK, Johnston HM, Coverdale JA (2001) Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 97:2293–2299PubMedCrossRefGoogle Scholar
  96. Nilsson SK, Haylock DN, Johnston HM, et al (2003) Hyaluronan is synthesized by primitive hemopoietic cells, participates in their lodgment at the endosteum following transplantation, and is involved in the regulation of their proliferation and differentiation in vitro. Blood 101:856–862PubMedCrossRefGoogle Scholar
  97. Nilsson SK, Johnston HM, Whitty GA, et al (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106:1232–1239PubMedCrossRefGoogle Scholar
  98. Orlic D, Kajstura J, Chimenti S, et al (2001) Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA 98:10344–10349PubMedCrossRefGoogle Scholar
  99. Papayannopoulou T, Nakamoto B (1993) Peripheralization of hemopoietic progenitors in primates treated with anti-VLA4 integrin. Proc Natl Acad Sci U S A 90:9374–9378PubMedCrossRefGoogle Scholar
  100. Papayannopoulou T, Craddock C, Nakamoto B, et al (1995) The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc Natl Acad Sci U S A 92:9647–9651PubMedCrossRefGoogle Scholar
  101. Papayannopoulou T, Priestley GV, Nakamoto B (1998) Anti-VLA4/VCAM-1-induced mobilization requires cooperative signaling through the kit/mkit ligand pathway. Blood 91:2231–2239PubMedGoogle Scholar
  102. Passamonti F, Rumi E, Pietra D, et al (2006) Relation between JAK2 (V617F) mutation status, granulocyte activation, and constitutive mobilization of CD34+ cells into peripheral blood in myeloproliferative disorders. Blood 107:3676–3682PubMedCrossRefGoogle Scholar
  103. Pelus LM, Bian H, King AG, et al (2004) Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GROβ/CXCL2 and GROβT/CXCL2Δ4. Blood 103:110–119PubMedCrossRefGoogle Scholar
  104. Pelus LM, Bian H, Fukuda S, et al (2005) The CXCR4 agonist peptide, CTCE-0021, rapidly mobilizes polymorphonuclear neutrophils and hematopoietic progenitor cells into peripheral blood and synergizes with granulocyte colony-stimulating factor. Exp Hematol 33:295–307PubMedCrossRefGoogle Scholar
  105. Perez LE, Alpdogan O, Shieh JH, et al (2004) Increased plasma levels of stromal-derived factor-1 (SDF-1/CXCL12) enhance human thrombopoiesis and mobilize human colonyforming cells (CFC) in NOD/SCID mice. Exp Hematol 32:300–307PubMedCrossRefGoogle Scholar
  106. Petit I, Szyper-Kravitz M, Nagler A, et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3:687–694PubMedCrossRefGoogle Scholar
  107. Pittenger MF, Mackay AM, Beck SC, et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  108. Pochampally RR, Smith JR, Ylostalo J, et al (2004) Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood 103:1647–1652PubMedCrossRefGoogle Scholar
  109. Pruijt JF, Fibbe WE, Laterveer L, et al (1999) Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc Natl Acad Sci U S A 96:10863–10868PubMedCrossRefGoogle Scholar
  110. Pruijt JF, Verzaal P, van Os R, et al (2002) Neutrophils are indispensable for hematopoietic stem cell mobilization induced by interleukin-8 in mice. Proc Natl Acad Sci U S A 99:6228–6233PubMedCrossRefGoogle Scholar
  111. Purton LE, Mielcarek M, Torok-Storb B (1998) Monocytes are the likely candidate’ stromal’ cell in G-CSF-mobilized peripheral blood. Bone Marrow Transplant 21:1075–1076PubMedCrossRefGoogle Scholar
  112. Qin G, Ii M, Silver M, et al (2006) Functional disruption of α4 integrin mobilizes bone marrow-derived endothelial progenitors and augments ischemic neovascularization. J Exp Med 203:153–163PubMedCrossRefGoogle Scholar
  113. Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9:702–712PubMedCrossRefGoogle Scholar
  114. Roberts AW, DeLuca E, Begley CG, et al (1995) Broad inter-individual variations in circulating progenitor cell numbers induced by granulocyte colony-stimulating factor therapy. Stem Cells 13:512–516PubMedCrossRefGoogle Scholar
  115. Roberts AW, Foote S, Alexander WS, et al (1997) Genetic influences determining progenitor cell mobilization and leukocytosis induced by granulocyte colony-stimulating factor. Blood 89:2736–2744PubMedGoogle Scholar
  116. Rochefort GY, Delorme B, Lopez A, et al (2006) Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells 24:2202–2208PubMedCrossRefGoogle Scholar
  117. Sale GE, Storb R (1983) Bilateral diffuse pulmonary ectopic ossification after marrow allograft in a dog. Evidence for allotransplantation of hemopoietic and mesenchymal stem cells. Exp Hematol 11:961–966PubMedGoogle Scholar
  118. Sato N, Sawada K, Takahashi TA, et al (1994) A time course study for optimal harvest of peripheral blood progenitor cells by granulocyte colony-stimulating factor in healthy volunteers. Exp Hematol 22:973–978PubMedGoogle Scholar
  119. Schofield R (1970) A comparative study of the repopulating potential of grafts from various haemopoietic sources: CFU repopulation. Cell Tissue Kinet 3:119–130PubMedGoogle Scholar
  120. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25PubMedGoogle Scholar
  121. Schweitzer KM, Drager AM, van der Valk P, et al (1996) Constitutive expression of E-selectin and vascular cell adhesion molecule-1 on endothelial cells of hematopoietic tissues. Am J Pathol 148:165–175PubMedGoogle Scholar
  122. Scott LM, Priestley GV, Papayannopoulou T (2003) Deletion of α4 integrins from adult hematopoietic cells reveals roles in homeostasis, regeneration, and homing. Mol Cell Biol 23:9349–9360PubMedCrossRefGoogle Scholar
  123. Semerad CL, Christopher MJ, Liu F, et al (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106:3020–3027PubMedCrossRefGoogle Scholar
  124. Sheridan WP, Begley CG, To LB, et al (1994) Phase II study of autologous filgrastim (GCSF)-mobilized peripheral blood progenitor cells to restore hemopoiesis after high-dose chemotherapy for lymphoid malignancies. Bone Marrow Transplant 14:105–111PubMedGoogle Scholar
  125. Siena S, Schiavo R, Pedrazzoli P, et al (2000) Therapeutic relevance of CD34 cell dose in blood cell transplantation for cancer therapy. J Clin Oncol 18:1360–1377PubMedGoogle Scholar
  126. Simmons PJ, Torok-Storb B (1991) Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78:55–62PubMedGoogle Scholar
  127. Sipkins DA, Wei X, Wu JW, et al (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435:969–973PubMedCrossRefGoogle Scholar
  128. Son BR, Marquez-Curtis LA, Kucia M, et al (2006) Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24:1254–1264PubMedCrossRefGoogle Scholar
  129. Stier S, Ko Y, Forkert R, et al (2005) Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 201:1781–1791PubMedCrossRefGoogle Scholar
  130. Stiff P, Gingrich R, Luger S, et al (2000) A randomized phase 2 study of PBPC mobilization by stem cell factor and filgrastim in heavily pretreated patients with Hodgkin’s disease or non-Hodgkin’s lymphoma. Bone Marrow Transplant 26:471–481PubMedCrossRefGoogle Scholar
  131. Takahashi T, Kalka C, Masuda H, et al (1999) Ischemia-and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438PubMedCrossRefGoogle Scholar
  132. Takamatsu Y, Simmons PJ, Moore RJ, et al (1998) Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization. Blood 92:3465–3473PubMedGoogle Scholar
  133. To LB, Haylock DN, Kimber RJ, et al (1984) High levels of circulating haemopoietic stem cells in very early remission from acute non-lymphoblastic leukaemia and their collection and cryopreservation. Br J Haematol 58:399–410PubMedGoogle Scholar
  134. To LB, Dyson PG, Juttner CA (1986) Cell-dose effect in circulating stem-cell autografting. Lancet 2:404–405PubMedCrossRefGoogle Scholar
  135. To LB, Davy ML, Haylock DN, et al (1989) Autotransplantation using peripheral blood stem cells mobilized by cyclophosphamide. Bone Marrow Transplant 4:595–596PubMedGoogle Scholar
  136. To LB, Haylock DN, Dowse T, et al (1994) A comparative study of the phenotype and proliferative capacity of peripheral blood (PB) CD34+ cells mobilized by four different protocols and those of steady-phase PB and bone marrow CD34+ cells. Blood 84:2930–2939PubMedGoogle Scholar
  137. To LB, Haylock DN, Simmons PJ, et al (1997) The biology and clinical uses of blood stem cells. Blood 89:2233–2258PubMedGoogle Scholar
  138. To LB, Bashford J, Durrant S, et al (2003) Successful mobilization of peripheral blood stem cells after addition of ancestim (stem cell factor) in patients who had failed a prior mobilization with filgrastim (granulocyte colony-stimulating factor) alone or with chemotherapy plus filgrastim. Bone Marrow Transplant 31:371–378PubMedCrossRefGoogle Scholar
  139. Tokoyoda K, Egawa T, Sugiyama T, et al (2004) Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20:707–718PubMedCrossRefGoogle Scholar
  140. Torii Y, Nitta Y, Akahori H, et al (1998) Mobilization of primitive haemopoietic progenitor cells and stem cells with long-term repopulating ability into peripheral blood in mice by pegylated recombinant human megakaryocyte growth and development factor. Br J Haematol 103:1172–1180PubMedCrossRefGoogle Scholar
  141. Tumbar T, Guasch G, Greco V, et al (2004) Defining the epithelial stem cell niche in skin. Science 303:359–363PubMedCrossRefGoogle Scholar
  142. Ulyanova T, Scott LM, Priestley GV, et al (2005) VCAM-1 expression in adult hematopoietic and nonhematopoietic cells is controlled by tissue-inductive signals and reflects their developmental origin. Blood 106:86–94PubMedCrossRefGoogle Scholar
  143. van Der Auwera P, Platzer E, Xu ZX, et al (2001) Pharmacodynamics and pharmacokinetics of single doses of subcutaneous pegylated human G-CSF mutant (Ro 25-8315) in healthy volunteers: comparison with single and multiple daily doses of filgrastim. Am J Hematol 66:245–251CrossRefGoogle Scholar
  144. van der Ham AC, Benner R, Vos O (1977) Mobilization of B and T lymphocytes and haemopoietic stem cells by polymethacrylic acid and dextran sulphate. Cell Tissue Kinet 10:387–397PubMedGoogle Scholar
  145. van Pel M, van Os R, Velders GA, et al (2006) Serpina1 is a potent inhibitor of IL-8-induced hematopoietic stem cell mobilization. Proc Natl Acad Sci USA 103:1469–1474PubMedCrossRefGoogle Scholar
  146. Vial T, Descotes J (1995) Clinical toxicity of cytokines used as haemopoietic growth factors. Drug Saf 13:371–406PubMedGoogle Scholar
  147. Villalon L, Odriozola J, Larana JG, et al (2000) Autologous peripheral blood progenitor cell transplantationwith<2×106 CD34+/kg: an analysis of variables concerning mobilisation and engraftment. Hematol J 1:374–381PubMedCrossRefGoogle Scholar
  148. Visnjic D, Kalajzic I, Gronowicz G, et al (2001) Conditional ablation of the osteoblast lineage in Col2.3Δtk transgenic mice. J Bone Miner Res 16:2222–2231PubMedCrossRefGoogle Scholar
  149. Visnjic D, Kalajzic Z, Rowe DW, et al (2004) Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103:3258–3264PubMedCrossRefGoogle Scholar
  150. Wexler SA, Donaldson C, Denning-Kendall P, et al (2003) Adult bone marrow is a rich source of human mesenchymal’ stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121:368–374PubMedCrossRefGoogle Scholar
  151. Winkler IG, Snapp KR, Simmons PJ, et al (2004) Adhesion to E-selectin promotes growth inhibition and apoptosis of human and murine hematopoietic progenitor cells independent of PSGL-1. Blood 103:1685–1692PubMedCrossRefGoogle Scholar
  152. Winkler IG, Hendy J, Coughlin P, et al (2005) Serine protease inhibitors serpina1andserpina3 are down-regulated in bone marrow during hematopoietic progenitor mobilization. J Exp Med 201:1077–1088PubMedCrossRefGoogle Scholar
  153. Wright DE, Wagers AJ, Gulati AP, et al (2001) Physiological migration of hematopoietic stem and progenitor cells. Science 294:1933–1936PubMedCrossRefGoogle Scholar
  154. Wynn RF, Hart CA, Corradi-Perini C, et al (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 104:2643–2645PubMedCrossRefGoogle Scholar
  155. Xu M, Bruno E, Chao J, et al (2005) Constitutive mobilization of CD34+ cells into the peripheral blood in idiopathic myelofibrosis may be due to the action of a number of proteases. Blood 105:4508–4515PubMedCrossRefGoogle Scholar
  156. Yin T, Li L (2006) The stem cell niches in bone. J Clin Invest 116:1195–1201PubMedCrossRefGoogle Scholar
  157. Yong KL, Watts M, Shaun Thomas N, et al (1998) Transmigration of CD34+ cells across specialized and nonspecialized endothelium requires prior activation by growth factors and is mediated by PECAM-1 (CD31). Blood 91:1196–1205PubMedGoogle Scholar
  158. Yu M, Xiao Z, Shen L, et al (2004) Mid-trimester fetal blood-derived adherent cells share characteristics similar to mesenchymal stem cells but full-term umbilical cord blood does not. Br J Haematol 124:666–675PubMedCrossRefGoogle Scholar
  159. Zhang J, Niu C, Ye L, et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425:836–841PubMedCrossRefGoogle Scholar
  160. Zhu J, Emerson SG (2004) A new bone to pick: osteoblasts and the haematopoietic stem-cell niche. Bioessays 26:595–599PubMedCrossRefGoogle Scholar
  161. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, et al (2000) Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2:477–488PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • J. -P. Lévesque
    • 1
  • I. G. Winkler
    • 1
  • S. R. Larsen
    • 2
    • 3
  • J. E. J. Rasko
    • 2
    • 3
  1. 1.Biotherapy ProgramMater Medical Research Institute, University of QueenslandSouth BrisbaneAustralia
  2. 2.Centenary Institute of Cancer Medicine and Cell BiologyUniversity of SydneyAustralia
  3. 3.Cell and Molecular Therapies, Institute of Haematology, Sydney Cancer CenterRoyal Prince Alfred HospitalCamperdownAustralia

Personalised recommendations