Function and Dysfunction of Mammalian Membrane Guanylyl Cyclase Receptors: Lessons from Genetic Mouse Models and Implications for Human Diseases

  • Michaela Kuhn

Abstract

Besides soluble guanylyl cyclase (GC), the receptor for NO, there are seven plasma membrane forms of guanylyl cyclase (GC) receptors, enzymes that synthesize the second-messenger cyclic GMP (cGMP). All membrane GCs (GC-A to GC-G) share a basic topology, which consists of an extracellular ligand binding domain, a short transmembrane region, and an intracellular domain that contains the catalytic (GC) region. Although the presence of the extracellular domain suggests that all these enzymes function as receptors, specific ligands have been identified for only four of them (GC-A through GC-D). GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure and volume homeostasis and also local antihypertrophic and antifibrotic actions in the heart. GC-B, the specific receptor for C-type natriuretic peptide, has a critical role in endochondral ossification. GC-C mediates the effects of guanylin and uroguanylin on intestinal electrolyte and water transport and epithelial cell growth and differentiation. GC-E and GC-F are colocalized within the same photoreceptor cells of the retina and have an important role in phototransduction. Finally, GC-D and GC-G appear to be pseudogenes in the human. In rodents, GC-D is exclusively expressed in the olfactory neuroepithelium, with chemosensory functions. GC-G is the last member of the membrane GC form to be identified. No other mammalian transmembrane GCs are predicted on the basis of gene sequence repositories. In contrast to the other orphan receptor GCs, GC-G has a broad tissue distribution in rodents, including the lung, intestine, kidney, skeletal muscle, and sperm, raising the possibility that there is another yet to be discovered family of cGMP-generating ligands. This chapter reviews the structure and functions of membrane GCs, with special focus on the insights gained to date from genetically modified mice and the role of alterations of these ligand/receptor systems in human diseases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airhart N, Yang YF, Roberts CT, Silberbach M (2003) Atrial natriuretic peptide induces natriuretic peptide receptor-cGMP-dependent protein kinase interaction. J Biol Chem 278:38693–38698PubMedGoogle Scholar
  2. Baehr W, Karan S, Maeda T, Luo DG, Li S, Bronson JD, Watt CB, Yau KW, Frederick JM, Palczewski K (2007) The function of guanylate cyclase 1 and guanylate cyclase 2 in rod and cone photoreceptors. J Biol Chem 282:8837–8847PubMedGoogle Scholar
  3. Bartels CF, Bükülmez H, Padayatti P, Rhee DK, van Ravenswaaij-Arts C, Pauli RM, Mundlos S, Chitayat D, Shih LY, Al-Gazali LI, Kant S, Cole T, Morton J, Cormier-Daire V, Faivre L, Lees M, Kirk J, Mortier GR, Leroy J, Zabel B, Kim CA, Crow Y, Braverman NE, van den Akker F, Warman ML (2004) Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am J Hum Genet 75:27–34PubMedGoogle Scholar
  4. Beige J, Ringel J, Hohenbleicher H, Rubattu S, Kreutz R, Sharma AM (1997) HpaII-polymorphism of the atrial-natriuretic-peptide gene and essential hypertension in whites. Am J Hypertens 10:1316–1318PubMedGoogle Scholar
  5. Bennett BD, Bennett GL, Vitangcol RV, Jewett JRS, Burnier J, Henzel W, Lowe DG (1991) Extracellular domain-IgG fusion proteins for three human natriuretic peptide receptors. J Biol Chem 266:23060–23067PubMedGoogle Scholar
  6. Brenner BM, Ballermann BJ, Gunning ME, Zeidel ML (1990) Diverse biological actions of atrial natriuretic peptide. Physiol Rev 70:665–699PubMedGoogle Scholar
  7. Bryan PM, Potter LR (2002) The atrial natriuretic peptide receptor (NPR-A/GC-A) is dephos-phorylated by distinct microcystin-sensitive and magnesium-dependent protein phosphatises. J Biol Chem 277:16041–16047PubMedGoogle Scholar
  8. Bulut D, Potthast R, Hanefeld C, Schulz T, Kuhn M, Mügge A (2003) Impaired vasodilator responses to atrial natriuretic peptide in essential hypertension. Eur J Clin Invest 33:567–573PubMedGoogle Scholar
  9. Burnett JC Jr, Kao PC, Hu DC, Heser DW, Heublein D, Granger JP, Opgenorth TJ, Reeder GS (1986) Atrial natriuretic peptide in congestive heart failure in the human. Science 231: 1145–1147PubMedGoogle Scholar
  10. Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS (1998) Nitric oxide, atrial natri-uretic peptide, and cGMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest 101:812–818PubMedGoogle Scholar
  11. Campese VM, Tawadrous M, Bigazzi R, Bianchi S, Mann AS, Oparil S, Raij L (1996) Salt intake and plasma atrial natriuretic peptide and nitric oxide in hypertension. Hypertension 28:335–340PubMedGoogle Scholar
  12. Carini R, De Cesaris MG, Splendore R, Domenicotti C, Nitti MP, Pronzato MA, Albano E (2003) Mechanisms of hepatocyte protection against hypoxic injury by atrial natriuretic peptide. Hep-atology 37:277–285Google Scholar
  13. Carrithers SL, Hill MJ, Johnson BR, O'Hara SM, Jackson BA, Ott CE, Lorenz J, Mann EA, Giannella RA, Forte LR, Greenberg RN (1999) Renal effects of uroguanylin and guanylin in vivo. Braz J Med Biol Res 32:1337–1344PubMedGoogle Scholar
  14. Carrithers SL, Ott CE, Hill MJ, Johnson BR, Cai W,Chang JJ, Shah RG, Sun C, Mann EA, Fonteles MC, Forte LR, Jackson BA, Giannella RA, Greenberg RN (2004) Guanylin and uroguanylin induce natriuresis in mice lacking guanylyl cyclase-C receptor. Kidney Int 65:40–53PubMedGoogle Scholar
  15. Castro LRV, Verde I, Cooper DMF, Fischmeister R (2006) Cyclic Guanosine monophosphate com-partmentation in rat cardiac myocytes. Circulation 113:2221–2228PubMedGoogle Scholar
  16. Chinkers M, Garbers DL (1989) The protein kinase domain of the ANP receptor is required for signaling. Science 245:1392–1394PubMedGoogle Scholar
  17. Chrisman TD, Garbers DL (1999) Reciprocal antagonism coordinates C-type natriuretic peptide and mitogen-signaling pathways in fibroblasts. J Biol Chem 274:4293–4299PubMedGoogle Scholar
  18. Chusho H, Tamura N, Ogawa Y, Yasoda A, Suda M, et al (2001) Dwarfism and early death in mice lacking C-type natriuretic peptide. Proc Natl Acad Sci U S A 98:4016–4021PubMedGoogle Scholar
  19. Currie MG, Fok KF, Kato J, Moore RJ, Hamra FK, Duffin KL, Smith CE (1992) Guanylin: an endogenous activator of intestinal guanylate cyclise. Proc Natl Acad Sci U S A 89:947–951PubMedGoogle Scholar
  20. de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28:89–94PubMedGoogle Scholar
  21. de Bold AJ, Ma KK, Zhang Y, de Bold ML, Bensimon M, Khoshbaten A (2001) The physiological and pathophysiological modulation of the endocrine function of the heart. Can J Physiol Pharmacol 79:705–714PubMedGoogle Scholar
  22. Dizhoor AM, Hurley JB (1999) Regulation of photoreceptor membrane guanylyl cyclases by guanylyl cyclase activator proteins. Methods 19:521–531PubMedGoogle Scholar
  23. Duda T, Koch KW (2002) Calcium-modulated membrane guanylate cyclase in synaptic transmission? Mol Cell Biochem 230:107–116PubMedGoogle Scholar
  24. Duda T, Sharma RK (2008) ONE-GC membrane guanylate cyclase, a trimodal odorant signal transducer. Biochem Biophys Res Commun 367:440–445PubMedGoogle Scholar
  25. Elitsur N, Lorenz JN, Hawkins JA, Rudolph JA, Witte D, Yang LE, McDonough AA, Cohen MB (2006) The proximal convoluted tubule is a target for the uroguanylin-regulated natriuretic response. J Pediatr Gastroenterol Nutr 43:S74–S81PubMedGoogle Scholar
  26. Fenrick R, Bouchard N, McNicoll N, De Lean A (1997) Glycosylation of asparagine 24 of the natriuretic peptide receptor-B is crucial for the formation of a competent ligand binding domain. Mol Cell Biochem 173:25–32PubMedGoogle Scholar
  27. Fischmeister R, Castro LR, Abi-Gerges A, Rochais F, Jurevicius J, Leroy J, Vandecasteele G (2006) Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 99:816–828PubMedGoogle Scholar
  28. Forte LR Jr (2005) Uroguanylin: physiological role as a natriuretic hormone. J Am Soc Nephrol 16:291–292PubMedGoogle Scholar
  29. Forte LR, Currie M (1995) Guanylin: a peptide regulator of epithelial transport. FASEB J 9: 643–650PubMedGoogle Scholar
  30. Foster DC, Garbers DL (1998) Dual role for adenine nucleotides in the regulation of the atrial natriuretic peptide receptor, guanylyl cyclase-A. J Biol Chem 273:16311–16318PubMedGoogle Scholar
  31. Fülle HJ, Vassar R, Foster DC, Yang RB, Axel R, Garbers DL (1995) A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc Natl Acad Sci U S A 92:3571–3575PubMedGoogle Scholar
  32. Garbers DL, Lowe DG (1994) Guanylyl cyclase receptors. J Biol Chem 269:30741–30744PubMedGoogle Scholar
  33. Guo D, Tan YC, Wang D, Madhusoodanan KS, Zheng Y, Maack T, Zhang JJ, Huang XY (2007) A new Rac-cGMP signaling pathway. Cell 128:341–355PubMedGoogle Scholar
  34. Hamra FK, Forte LR, Eber SL, Pidhorodeckyj NV, Krause WJ, Freeman RH, Chin DT, Tompkins JA, Fok KF, Smith CE, et al (1993) Uroguanylin: structure and activity of a second endogenous peptide that stimulates intestinal guanylate cyclise. Proc Natl Acad Sci U S A 90:10464–10468PubMedGoogle Scholar
  35. Haneda M, Kikkawa R, Maeda S, Togawa M, Koya D, Horide N, Kajiwara N, Shigeta Y (1991) Dual mechanism of angiotensin II inhibits ANP-induced mesangial cGMP accumulation. Kidney Int 40:188–194PubMedGoogle Scholar
  36. Hasegawa M, Hidaka Y, Wada A, Hirayama T, Simonishi Y (1999) The relevance of N-glycosylation to the binding of a ligand to guanylate cyclase C. Eur J Biochem 263:338–346PubMedGoogle Scholar
  37. Hess R, Kuhn M, Schulz-Knappe P, Raida M, Fuchs M, Klodt J, Adermann K, Kaever V, Cetin Y, Forssmann WG (1995) GCAP-II: isolation and characterization of the circulating form of human uroguanylin. FEBS Lett 374:34–38PubMedGoogle Scholar
  38. Hirooka Y, Takeshita A, Imaizumi T, Suzuki S, Yoshida M, Ando S, Nakamura M (1990) Attenuated forearm vasodilative response to intra-arterial atrial natriuretic peptide in patients with heart failure. Circulation 82:147–153PubMedGoogle Scholar
  39. Holtwick R, Gotthardt M, Skryabin B, Steinmetz M, Potthast R, Zetsche B, Hammer B, Herz J, Kuhn M (2002a) Smooth muscle-selective deletion of guanylyl cyclase-A prevents the acute but not chronic effects of ANP on blood pressure. Proc Natl Acad Sci U S A 99:7142–7147Google Scholar
  40. Holtwick R, Baba HA, Ehler E, Risse D, Vobeta M, Gehrmann J, Pierkes M, Kuhn M (2002b) Left but not right cardiac hypertrophy in atrial natriuretic peptide receptor-deficient mice is prevented by angiotensin type 1 receptor antagonist losartan. J Cardiovasc Pharmacol 40: 725–734Google Scholar
  41. Holtwick R, Van Eickels M, Skryabin BV, Baba HA, Bubikat A, Begrow F, Schneider MD, Garbers DL, Kuhn M (2003) Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A. J Clin Invest 111:1399–1407PubMedGoogle Scholar
  42. Huang YH, Wei CC, Su YH, Wu BT, Ciou YY, Tu CF, Cooper TG, Yeung CH, Chu ST, Tsai MT, Yang RB (2006) Localization and characterization of an orphan receptor, guanylyl cyclase-G, in mouse testis and sperm. Endocrinology 147:4792–4800PubMedGoogle Scholar
  43. Jewett JR, Koller KJ, Goeddel DV, Lowe DG (1993) Hormonal induction of low affinity receptor guanylyl cyclase. EMBO J 12:769–777PubMedGoogle Scholar
  44. John SW, Veress AT, Honrath U, Chong CK, Peng L, Smithies O, Sonnenberg H (1996) Blood pressure and fluid-electrolyte balance in mice with reduced or absent ANP. Am J Physiol 271:R109–R114PubMedGoogle Scholar
  45. Johnston CI, Hodsman PG, Kohzuki M, Casley DJ, Fabris B, Phillips PA (1989) Interaction between atrial natriuretic peptide and the renin angiotensin aldosterone system: endogenous antagonists. Am J Med 87:24S–28SPubMedCrossRefGoogle Scholar
  46. Julifs DM, Fülle HJ, Zhao AZ, Houslay MD, Garbers DL, Beavo JA (1997) A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guany-lyl cyclase-D define a unique olfactory signal transduction pathway. Proc Natl Acad Sci U S A 94:3388–3395Google Scholar
  47. Kangawa K, Matsuo H (1984) Purification and complete amino acid sequence of α-human atrial natriuretic polypeptide (α-hANP). Biochem Biophys Res Commun 118:131–139PubMedGoogle Scholar
  48. Kapoun AM, Liang F, O'Young G, Damm DL, Quon D, White RT, Munson K, Lam A, Schreiner GF, Protter AA (2004) B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts: fibrosis, myofibroblast conversion, proliferation, and inflammation. Circ Res 94:453–461PubMedGoogle Scholar
  49. Karan S, Zhang H, Li S, Frederick JM, Baehr W (2008) A model for transport of membrane-associated phototransduction polypeptides in rod and cone photoreceptor inner segments. Vision Res 48:442–452PubMedGoogle Scholar
  50. Kawakami R, Saito Y, Kishimoto I, Harada M, Kuwahara K, Takahashi N, Nakagawa Y, Nakanishi M, Tanimoto K, Usami S, Yasuno S, Kinoshita H, Chusho H, Tamura N, Ogawa Y, Nakao K (2004) Overexpression of brain natriuretic peptide facilitates neutrophil infiltration and cardiac matrix metalloproteinase-9 expression after acute myocardial infarction. Circulation 110: 3306–3312PubMedGoogle Scholar
  51. Kelsell RE, Gregory-Evans K, Payne AM, Perrault I, Kaplan J, Yang RB, Garbers DL, Bird AC, Moore AT, Hunt DM (1998) Mutations in the retinal guanylate cyclase (RETGC-1) gene in dominant cone-rod dystrophy. Hum Mol Genet 7:1179–1184PubMedGoogle Scholar
  52. Kilic A, Bubikat A, Gaßner B, Baba HA, Kuhn M (2007) Local actions of atrial natriuretic peptide counteract angiotensin II stimulated cardiac remodeling. Endocrinology 148:4162–4169PubMedGoogle Scholar
  53. Knowles JW, Erickson LM, Guy VK, Sigel CS, Wilder JC, Maeda N (2003) Common variations in noncoding regions of the human natriuretic peptide receptor A gene have quantitative effects. Hum Genet 112:62–70PubMedGoogle Scholar
  54. Koller KJ, de Sauvage FJ, Lowe DG, Goeddel DV (1992) Conservation of the kinaselike regulatory domain is essential for activation of the natriuretic peptide receptor guanylyl cyclases. Mol Cell Biol 12:2581–2590PubMedGoogle Scholar
  55. Komatsu Y, Ito H, Suga S, Ogawa Y, Hama N, Kishimoto I, Nakagawa O, Igaki T, Doi K, Yoshimasa T, Nakao K (1996) Regulation of endothelial production of C-type natriuretic pep-tide in coculture with vascular smooth muscle cells. Role of the vascular natriuretic peptide system in vascular growth inhibition. Circ Res 78:606–614PubMedGoogle Scholar
  56. Kook H, Itoh H, Choi BS, Sawada N, Doi K, Hwang TJ, Kim KK, Arai H, Baik YH, Nakao K (2003) Physiological concentration of atrial natriuretic peptide induces endothelial regeneration in vitro. Am J Physiol 284:H1388–1397Google Scholar
  57. Kuhn M (2003) Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res 93:700–709PubMedGoogle Scholar
  58. Kuhn M, Raida M, Adermann K, Schulz-Knappe P, Gerzer R, Heim JM, Forssmann WG (1993) The circulating bioactive form of human guanylin is a high molecular weight peptide (10.3 kDa). FEBS Lett 318:205–209PubMedGoogle Scholar
  59. Lafontan M, Moro C, Sengenes C, Galitzky J, Crampes F, Berlan M (2005) An unsuspected metabolic role for atrial natriuretic peptides: the control of lipolysis, lipid mobilization, and systemic nonesterified fatty acids levels in humans. Arterioscler Thromb Vasc Biol 25: 2032–2042PubMedGoogle Scholar
  60. Laura RP, Hurley JB (1998) The kinase homology domain of retinal guanylyl cyclases 1 and 2 specifies the affinity and cooperativity of interaction with guanylyl cyclase activating protein-2. Biochemistry 37:11264–11271PubMedGoogle Scholar
  61. Leinders-Zufall T, Cockerham RE, Michalakis S, Biel M, Garbers DL, Reed RR, Zufall F, Munger SD (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Natl Acad Sci U S A 104:14507–14512PubMedGoogle Scholar
  62. Li P, Lin JE, Chervoneva I, Schulz S, Waldman SA, Pitari GM (2007) Homeostatic control of the crypt-villus axis by the bacterial enterotoxin receptor guanylyl cyclase C restricts the proliferating compartment in intestine. Am J Pathol 171:1847–1858PubMedGoogle Scholar
  63. Lin H, Cheng CF, Hou HH, Lian WS, Chao YC, Ciou YY, Djoko B, Tsai MT, Cheng CJ, Yang RB (2008) Disruption of guanylyl cyclase-G protects against acute renal injury. J Am Soc Nephrol 19:339–348PubMedGoogle Scholar
  64. Lopez MJ, Wong SK, Kishimoto I, Dubois S, Mach V, Friesen J, Garbers DL, Beuve A (1995) Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature 378:65–68PubMedGoogle Scholar
  65. Lopez MJ, Garbers DL, Kuhn M (1997) The guanylyl cyclase-deficient mouse defines differential pathways of natriuretic peptide signaling. J Biol Chem 272:23064–23068PubMedGoogle Scholar
  66. Lorenz JN, Nieman M, Sabo J, Sanford LP, Hawkins JA, Elitsur N, Gawenis LR, Clarke LL, Cohen MB (2003) Uroguanylin knockout mice have increased blood pressure and impaired natriuretic response to enteral NaCl load. J Clin Invest 112:1244–1254PubMedGoogle Scholar
  67. Lowe DG, Fendly BM (1992) Human natriuretic peptide receptor-A guanylyl cyclase: hormone cross-linking and antibody reactivity distinguish receptor glycoforms. J Biol Chem 267:21691– 21697PubMedGoogle Scholar
  68. Lowe DG, Dizhoor AM, Liu K, Gu Q, Spencer M, Laura R, Lu L, Hurley JB (1995) Cloning and expression of a second photoreceptor-specific membrane retina guanylyl cyclase (RetGC), RetGC-2. Proc Natl Acad Sci U S A 92:5535–5539PubMedGoogle Scholar
  69. Misono KS, Ogawa H, Qiu Y, Ogata CM (2005) Structural studies of the natriuretic peptide receptor: a novel hormone-induced rotation mechanism for transmembrane signal transduction. Peptides 26:957–968PubMedGoogle Scholar
  70. Miyagi M, Zhang X, Misono KS (2000) Glycosylation sites in the atrial natriuretic peptide receptor: oligosaccharide structures are not required for hormone binding. Eur J Biochem 267:5758– 5768PubMedGoogle Scholar
  71. Müller D, Cortes-Dericks L, Budnik LT, Brunswig-Spickenheier B, Pancratius M, Speth RC, Mukhopadhyay AK, Middendorff R (2006) Homologous and lysophosphatidic acid-induced desensitization of the atrial natriuretic peptide receptor, guanylyl cyclase-A, in MA-10 leydig cells. Endocrinology 147:2974–2985PubMedGoogle Scholar
  72. Nausch LW, Ledoux J, Bonev AD, Nelson MT, Dostmann WR (2008) Differential patterning of cGMP in vascular smooth muscle cells revealed by single GFP-linked biosensors. Proc Natl Acad Sci U S A 105:365–370PubMedGoogle Scholar
  73. Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci U S A 94:14730–14735PubMedGoogle Scholar
  74. Oliver PM, John SW, Purdy KE, Kim R, Maeda N, Goy MF, Smithies O (1998) Natriuretic peptide receptor 1 expression influences blood pressures of mice in a dose-dependent manner. Proc Natl Acad Sci U S A 95:2547–2551PubMedGoogle Scholar
  75. Olney RC (2006a) C-type natriuretic peptide in growth: a new paradigm. Growth Horm IGF Res 16:S6–S14Google Scholar
  76. Olney RC, Bükülmez H, Bartels CF, Prickett TC, Espiner EA, Potter LR, Warman ML (2006b) Heterozygous mutations in natriuretic peptide receptor-B (NPR2) are associated with short stature. J Clin Endocrinol Metab 91:1229–1232Google Scholar
  77. Pagel-Langenickel I, Buttgereit J, Bader M, Langenickel TH (2007) Natriuretic peptide receptor B signaling in the cardiovascular system: protection from cardiac hypertrophy. J Mol Med 85:797–810PubMedGoogle Scholar
  78. Palczewski K, Sokal I, Baehr W (2004) Guanylate cyclase-activating proteins: structure, function, and diversity. Biochem Biophys Res Commun 322:1123–1130PubMedGoogle Scholar
  79. Patel JB, Valencik ML, Pritchett AM, Burnett JC Jr, McDonald JA, Redfield MM (2005) Cardiac-specific attenuation of natriuretic peptide A receptor activity accentuates adverse cardiac remodeling and mortality in response to pressure overload. Am J Physiol Heart Circ Physiol 289:H777–H784PubMedGoogle Scholar
  80. Perrault I, Rozet JM, Calvas P, Gerber S, Camuzat A, Dollfus H, Chatelin S, Souied E, Ghazi I, Leowski C, Bonnemaison M, Le Paslier D, Frézal J, Dufier JL, Pittler S, Munnich A, Kaplan J (1996) Retinal-specific guanylate cyclase gene mutations in Leber's congenital amaurosis. Nat Genet 14:461–464PubMedGoogle Scholar
  81. Pfeifer A, Aszodi A, Seidler U, Ruth P, Hofmann F, Fässler R (1996) Intestinal secretory defects and dwarfism in mice lacking cGMP-dependent protein kinase II. Science 274:2082–2086PubMedGoogle Scholar
  82. Pitari GM, Di Guglielmo MD, Park J, Schulz S, Waldman SA (2001) Guanylyl cyclase C agonists regulate progression through the cell cycle of human colon carcinoma cells. Proc Natl Acad Sci U S A 98:7846–7851PubMedGoogle Scholar
  83. Potter LR (2005) Domain analysis of human transmembrane guanylyl cyclase receptors: implications for regulation. Front Biosci 10:1205–1220PubMedGoogle Scholar
  84. Potter LR, Garbers DL (1992) Dephosphorylation of the guanylyl cyclase-A receptor causes de-sensitization. J Biol Chem 267:14531–14534PubMedGoogle Scholar
  85. Potter LR, Hunter T (1998) Phosphorylation of the kinase homology domain is essential for activation of the A-type natriuretic peptide receptor. Mol Cell Biol 18:2164–2172PubMedGoogle Scholar
  86. Potter LR, Hunter T (2001) Guanylyl cyclase-linked natriuretic peptide receptors: structure and regulation. J Biol Chem 276:6057–6060PubMedGoogle Scholar
  87. Rubattu S, Bigatti G, Evangelista A, Lanzani C, Stanzione R, Zagato L, Manunta P, Marchitti S, Venturelli V, Bianchi G, Volpe M, Stella P (2006) Association of atrial natriuretic peptide and type A natriuretic peptide receptor gene polymorphisms with left ventricular mass in human essential hypertension. J Am Coll Cardiol 48:499–505PubMedGoogle Scholar
  88. Ruskoaho H (1992) Atrial natriuretic peptide: synthesis, release, and metabolism. Pharmacol Rev 44:481–602Google Scholar
  89. Rutledge DR, Sun Y, Ross EA (1995) Polymorphisms within the atrial natriuretic peptide gene in essential hypertension. J Hypertens 13:953–955PubMedGoogle Scholar
  90. Sabrane K, Kruse MN, Fabritz L, Zetsche B, Mitko D, Skryabin BV, Zwiener M, Baba HA, Yanagisawa M, Kuhn M (2005) Vascular endothelium is critically involved in the hypotensive and hypovolemic actions of atrial natriuretic peptide. J Clin Invest 115:1666–1674PubMedGoogle Scholar
  91. Sala C, Ambrosi B, Morganti A (2001) Blunted vascular and renal effects of exogenous atrial natriuretic peptide in patients with Cushing's disease. J Clin Endocrinol Metab 86:1957–1961PubMedGoogle Scholar
  92. Santos-Neto MS, Carvalho AF, Forte LR, Fonteles MC (1999) Relationship between the actions of atrial natriuretic peptide (ANP), guanylin and uroguanylin on the isolated kidney. Braz Med Biol Res 32:1015–1019Google Scholar
  93. Schmidt H, Stonkute A, Jüttner R, Schäffer S, Buttgereit J, Feil R, Hofmann F, Rathjen FG (2007) The receptor guanylyl cyclase Npr2 is essential for sensory axon bifurcation within the spinal cord. J Cell Biol 179:331–340PubMedGoogle Scholar
  94. Schulz S, Green CK, Yuen PS, Garbers DL (1990) Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell 63:941–948PubMedGoogle Scholar
  95. Schulz S, Lopez MJ, Kuhn M, Garbers DL (1997) Disruption of the guanylyl cyclase-C gene leads to a paradoxical phenotype of viable but heat-stable enterotoxin-resistant mice. J Clin Invest 100:1590–1595PubMedGoogle Scholar
  96. Schulz S, Wedel BJ, Matthews A, Garbers DL (1998) The cloning and expression of a new guanylyl cyclase orphan receptor. J Biol Chem 273:1032–1037PubMedGoogle Scholar
  97. Schulz-Knappe P, Forssmann K, Herbst F, Hock D, Pipkorn R, Forssmann WG (1988) Isolation and structural analysis of “urodilatin,” a new peptide of the cardiodilatin-(ANP)-family, extracted from human urine. Klin Wochenschr 66:752–759PubMedGoogle Scholar
  98. Seebacher T, Beitz E, Kumagami H, Wild K, Ruppersberg JP, Schultz JE (1999) Expression of membrane-bound and cytosolic guanylyl cyclases in the rat inner ear. Hear Res 127:95–102PubMedGoogle Scholar
  99. Shailubhai K, Yu HH, Karunanandaa K, Wang JY, Eber SL, Wang Y, Joo NS, Kim HD, Miedema BW, Abbas SZ, Boddupalli SS, Currie MG, Forte LR (2000) Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarci-noma cells via cGMP. Cancer Res 60:5151–5157PubMedGoogle Scholar
  100. Shi SJ, Nguyen HT, Sharma GD, Navar LG, Pandey KN (2001) Genetic disruption of atrial natri-uretic peptide receptor-A alters renin and angiotensin II levels. Am J Physiol 281:F665–F673Google Scholar
  101. Sindic A, Basoglu C, Cerci A, Hirsch JR, Potthast R, Kuhn M, Ghanekar Y, Visweswariah SS, Schlatter E (2002) Guanylin, uroguanylin, and heat-stable euterotoxin activate guanylate cy-clase C and/or a pertussis toxin-sensitive G protein in human proximal tubule cells. J Biol Chem 277:17758–17764Google Scholar
  102. Sindic A, Velic A, Başoglu C, Hirsch JR, Edemir B, Kuhn M, Schlatter E (2005) Uroguanylin and guanylin regulate transport of mouse cortical collecting duct independent of guanylate cyclase C. Kidney Int 68:1008–1017PubMedGoogle Scholar
  103. Skryabin BV, Holtwick R, Fabritz L, Kruse MN, Veltrup I, Stypmann J, Kirchhof P, Sabrane K, Bubikat A, Voss M, Kuhn M (2004) Hypervolemic hypertension in mice with systemic inac-tivation of the (floxed) guanylyl cyclase-A gene by alphaMHC-Cre-mediated recombination. Genesis 39:288–298PubMedGoogle Scholar
  104. Smith M, Whittock N, Searle A, Croft M, Brewer C, Cole M (2007) Phenotype of autosomal dominant cone-rod dystrophy due to the R838C mutation of the GUCY2D gene encoding retinal guanylate cyclase-1. Eye 21:1220–1225PubMedGoogle Scholar
  105. Steinbrecher KA, Wowk SA, Rudolph JA, Witte DP, Cohen MB (2002) Targeted inactivation of the mouse guanylin gene results in altered dynamics of colonic epithelial proliferation. Am J Pathol 161:2169–2178PubMedGoogle Scholar
  106. Steinhelper ME, Cochrane KL, Field LJ (1990) Hypotension in transgenic mice expressing atrial natriuretic factor fusion genes. Hypertension 16:301–307PubMedGoogle Scholar
  107. Stratton RC, Squires PE, Green AK (2008) ANP stimulates hepatocyte Ca(2+) efflux via plasma membrane recruitment of PKGIalpha. Biochem Biophys Res Commun 368:965–970PubMedGoogle Scholar
  108. Sudoh T, Kangawa K, Minamino N, Matsuo H (1988) A new natriuretic peptide in porcine brain. Nature 332:78–81PubMedGoogle Scholar
  109. Sudoh T, Minamino N, Kangawa K, Matsuo H (1990) C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Com-mun 168:863–870Google Scholar
  110. Takimoto E, Belardi D, Tocchetti CG, Vahebi S, Cormaci G, Ketner EA, Moens AL, Champion HC, Kass DA (2007) Compartmentalization of cardiac β-adrenergic inotropy modulation by phosphodiesterase type 5. Circulation 115:2159–2167PubMedGoogle Scholar
  111. Tamura N, Ogawa Y, Chusho H, Nakamura K, Nakao K, Suda M, Kasahara M, Hashimoto R, Katsuura G, Mukoyama M, Itoh H, Saito Y, Tanaka I, Otani H, Katsuki M (2000) Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci U S A 97:4239–4244PubMedGoogle Scholar
  112. Tamura N, Doolittle LK, Hammer RE, Shelton JM, Richardson JA, Garbers DL (2004) Critical roles of the guanylyl cyclase B receptor in endochondral ossification and development of female reproductive organs. Proc Natl Acad Sci U S A 101:17300–17305PubMedGoogle Scholar
  113. Tsuruda T, Boerrigter G, Huntley BK, Noser JA, Cataliotti A, Costello-Boerrigter LC, Chen HH, Burnett JC Jr. (2002) Brain natriuretic peptide is produced in cardiac fibroblasts and induces matrix metalloproteinases. Circ Res 91:1127–1134PubMedGoogle Scholar
  114. Van der Zander K, Houben AJ, Kroon AA, de Leeuw PW (1999) Effects of brain natriuretic peptide on forearm vasculature: comparison with atrial natriuretic peptide. Cardiovasc Res 44:595–600PubMedGoogle Scholar
  115. Wei CM, Aarhus LL, Miller VM, Burnett JC (1994) Action of C-type natriuretic peptide in isolated canine arteries and veins. Biochem Biophys Res Commun 205:765–771PubMedGoogle Scholar
  116. Wilson EM, Chinkers M (1995) Identification of sequences mediating guanylyl cyclase dimeriza-tion. Biochemistry 34:4696–4701PubMedGoogle Scholar
  117. Yamahara K, Itoh H, Chun TH, Ogawa Y, Yamashita J, Sawada N, Fukunaga Y, Sone M, Yurugi-Kobayashi T, Miyashita K, Tsujimoto H, Kook H, Feil R, Garbers DL, Hofmann F, Nakao K (2003) Significance and therapeutic potential of the natriuretic peptides/cGMP/cGMP-dependent protein kinase pathway in vascular regeneration. Proc Natl Acad Sci U S A 100:3404–3409PubMedGoogle Scholar
  118. Yang RB, Foster DC, Garbers DL, Fülle HJ (1995) Two membrane forms of guanylyl cyclase found in the eye. Proc Natl Acad Sci U S A 92:602–606PubMedGoogle Scholar
  119. Yang RB, Garbers DL (1997) Two eye guanylyl cyclases are expressed in the same photoreceptor cells and form homomers in preference to heteromers. J Biol Chem 272:13738–13742PubMedGoogle Scholar
  120. Yang RB, Robinson SW, Xiong WH, Yau KW, Birch DG, Garbers DL (1999) Disruption of a retinal guanylyl cyclase gene leads to cone-specific dystrophy and paradoxical rod behavior. J Neurosci 19:5889–5897PubMedGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Michaela Kuhn
    • 1
  1. 1.Institut für PhysiologieUniversität WürzburgWürzburgGermany

Personalised recommendations