Advertisement

cGMP-Dependent Protein Kinase as a Modifier of Behaviour

  • Christopher J. Reaume
  • Marla B. Sokolowski
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 191)

Abstract

The importance of cGMP-dependent protein kinase (PKG) to the modulation of behavioural phenotypes has become increasingly clear in recent decades. The effects of PKG on behaviour have been studied in diverse taxa from perspectives as varied as ethology, evolution, genetics and neuropharmacology. The genetic variation of the Drosophila melanogaster gene, foraging (for), has provided a fertile model for examining natural variation in a single major gene influencing behaviour. Concurrent studies in other invertebrates and mammals suggest that PKG is an important signalling molecule with varied influences on behaviour and a large degree of pleiotropy and plasticity. Comparing these cross-taxa effects suggests that there are several potentially overlapping behavioural modalities in which PKG signalling acts to influence behaviours which include feeding, learning, stress and biological rhythms. More in-depth comparative analyses across taxa of the similarities and differences of the influence of PKG on behaviour may provide powerful mechanistic explications of the evolution of behaviour.

Keywords

cGMP-dependent protein kinase Behaviour Natural genetic variation Evolution Pleiotropy Plasticity Foraging Learning and memory Stress Rhythms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agostino PV, Plano SA, Golombek DA (2007) Sildenafil accelerates reentrainment of circadian rhythms after advancing light schedules. Proc Natl Acad Sci 104:9834–9839PubMedCrossRefGoogle Scholar
  2. Arancio O, Antonova I, Gambaryan S, Lohmann SM, Wood JS, Lawrence DS, Hawkins RD (2001) Presynaptic role of cGMP-dependent protein kinase during long-lasting potentiation. J Neurosci 21:143–149PubMedGoogle Scholar
  3. Bauer SJ, Sokolowksi MB (1985) A genetic analysis of path length and pupation height in a natural population of Drosophila melanogaster. Can J Gen Cyt 27:334–340Google Scholar
  4. Belay AT, Scheiner R, So AK-C, Douglas SJ, Chakabroty-Chatterjee M, Levine JD, Sokolowski MB (2007) The foraging gene of Drosophila melanogaster: spatial-expression analysis and sucrose responsiveness. J Comp Neurol 504:570–582PubMedCrossRefGoogle Scholar
  5. Ben-Shahar Y, Robichon A, Sokolowski MB, Robinson GE (2002) Influence of gene action across different time scales on behavior. Science 296:741–744CrossRefGoogle Scholar
  6. Ben-Shahar Y, Leung HT, Pak WL, Sokolowski MB, Robinson GE (2003) cGMP-dependent changes in phototaxis: A possible role for the foraging gene in honey bee division of labour. J Exp Biol 206:2507–2515CrossRefGoogle Scholar
  7. Beshers SN, Huang ZY, Oono Y, Robinson GE (2001) Social inhibition and the regulation of temporal polyethism in honey bees. J Theor Biol 213:461–479PubMedCrossRefGoogle Scholar
  8. Boisvert MJ, Shery DF (2006) Interval timing by an invertebrate, the bumble bee Bombus impatiens. Curr Biol 16:1636–1640PubMedCrossRefGoogle Scholar
  9. Bolshakov VY, Siegelbaum SA (1995) Regulation of hippocampal transmitter release during development and long-term potentiation. Science 269:1730–1734PubMedCrossRefGoogle Scholar
  10. Boyden ES, Katoh A, Raymond JL (2004) Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu Rev Neurosci 27:581–609PubMedCrossRefGoogle Scholar
  11. Castellucci VF, Kandel ER (1974) A quantal analysis of the synaptic depression underlying habituation of the gill-withdrawal reflex in Aplysia. Proc Natl Acad Sci 71:5004–5008PubMedCrossRefGoogle Scholar
  12. Challet E, Caldelas I, Graff C, Pevet P (2003) Synchronization of the molecular clockwork by light- and food-related cues in mammals. Biol Chem 384:711–719PubMedCrossRefGoogle Scholar
  13. Challet E (2007) Clock genes, circadian rhythms and food intake. Pathol Biol (Paris) 55:176–177Google Scholar
  14. Chen C, Tonegawa S (1997) Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning, and memory in the mammalian brain. Annu Rev Neurosci 20:157–184PubMedCrossRefGoogle Scholar
  15. Clem RL, Celikel T, Barth AL (2007) Ongoing in vivo experience triggers synaptic metaplasticity in the neocortex. Science 319:101–104CrossRefGoogle Scholar
  16. Comolli J, Hastings JW (1999) Novel Effects on The Gonyaulax Circadian System Produced by the Protein Kinase Inhibitor Staurosporine. J Biol Rhythms 14:10–18CrossRefGoogle Scholar
  17. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950–2961PubMedCrossRefGoogle Scholar
  18. Daniels SA, Ailion M, Thomas JH, Sengupta P (2000) egl-4 acts through a transforming growth factor-β/SMAD pathway in Caenorhabditis elegans to regulate multiple neuronal circuits in response to sensory cues. Genetics 156:123–141PubMedGoogle Scholar
  19. Dawson-Scully K, Armstrong GAB, Kent C, Robertson RM, Sokolowski MB (2007) Natural variation in the thermotolerance of neural function and behavior due to a cGMP dependent protein kinase. PLoS ONE 2:e773CrossRefGoogle Scholar
  20. Dean AM, Thornton JW (2007) Mechanistic approaches to the study of evolution: the functional synthesis. Nat Rev Genet 8:675–688PubMedCrossRefGoogle Scholar
  21. de Bono M, Bargmann C (1998) Natural variation in a neuropeptIDe V receptor homolog modifies social behaviour and food response in C. elegans. Cell 94:679–689PubMedCrossRefGoogle Scholar
  22. Douglas SJ, Dawson-Scully K, Sokolowski MB (2005) The neurogenetics and evolution of food-related behaviours. Trends in Neurosci 28:644–652Google Scholar
  23. Dunlap JC, Loros JL, Decoursey PJ (2004) Chronobiology: biological timekeeping. Sinauer Associates, Sunderland MAGoogle Scholar
  24. de Belle SJ, Sokolowski MB (1987) Heredity of rover/sitter: Alternative foraging strategies of Drosophila melanogaster larvae. Heredity 59:73–83CrossRefGoogle Scholar
  25. de Belle SJ, Sokolowski MB (1989) Rover/sitter foraging behavior in Drosophila melanogaster: Genetic localization to chromosome-2L using compound autosomes. J Insect Behav 2:291–299CrossRefGoogle Scholar
  26. de Belle JS, Hilliker AJ, Sokolowski MB (1989) Genetic localization of foraging (for): a major gene for larval behavior in Drosophila melanogaster. Genetics 123:157–163PubMedGoogle Scholar
  27. de Belle JS, Sokolowski MB, Hilliker AJ (1993) Genetic analysis of the foraging microregion of Drosophila melanogaster. Genome 36:94–101PubMedCrossRefGoogle Scholar
  28. Engel JE, Wu C-F (1996) Alteration of non-associative conditioning of an IDentified escape circuit in Drosophila memory mutants. J Neurosci 16:3486–3499PubMedGoogle Scholar
  29. Engel JE, Xie X-J, Sokolowski MB, Wu C-F (2000) A cGMP-dependent protein kinase gene, foraging, modifies habituation-like response decrement of the giant-fiber escape circuit in Drosophila. Learn Mem 7:341–352PubMedCrossRefGoogle Scholar
  30. L'Etoile N, Coburn C, Kistler A, Gallegos G, Bargmann C (2002) The cyclic GMP-dependent protein kinase EGL-4 directs olfactory adaptation in C. elegans. Neuron 36:1079–1089PubMedCrossRefGoogle Scholar
  31. Feil R, Hartmann J, Luo C, Wolfsgruber W, Schilling K, Feil S, Barski JJ, Meyer M, Konnerth A, De Zeeuw CI, Hofmann F (2003) Impairment of LTD and cerebellar learning by Purkinje cell-specific ablation of cGMP-dependent protein kinase I. J Cell Biol 163:295–302PubMedCrossRefGoogle Scholar
  32. Feil R, Hofmann F, Kleppisch T (2005) Function of cGMP-dependent protein kinases in the nervous system. Rev Neurosci 16:23–41PubMedGoogle Scholar
  33. Feil R, Kleppisch T (2008) NO/cGMP-dependent modulation of synaptic transmission. Handb Exp Pharmacol. 2008:529–560CrossRefGoogle Scholar
  34. Fitzpatrick MJ, Sokolowski MB (2004) In search of food: Exploring the evolutionary link between cGMP-dependent protein kinase (PKG) and behaviour. Int Comp Biol 44:28–36CrossRefGoogle Scholar
  35. Fitzpatrick MJ, Feder E, Rowe L, Sokolowski MB (2007) Maintaining a behaviour polymorphism by frequency-dependent selection on a single gene. Nature 447:210–212PubMedCrossRefGoogle Scholar
  36. Fujiwara M, Sengupta P, McIntire SL (2002) Regulation of body size and behavioral state of C. elegans by sensory perception and EGL-4 cGMP-dependent protein kinase. Neuron 36:1091–1102PubMedCrossRefGoogle Scholar
  37. Golombek DA, Agostino PV, Plano SA, Ferreyra GA (2004) Signalling in the mammalian circa-dian clock: the NO/cGMP pathway. Neurochem Int 45:929–936PubMedCrossRefGoogle Scholar
  38. Graf SA, Sokolowski MB (1989) Rover/sitter Drosophila melanogaster larval foraging polymorphism as a function of larval development, food-patch quality, and starvation. J Insec Behav 2:301–313CrossRefGoogle Scholar
  39. Hawkins RD, Kandel ER, Bailey CH (2006) Molecular Mechanisms of Memory Storage in Aplysia. Biol Bull 210:174–191PubMedCrossRefGoogle Scholar
  40. Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4: 266–275PubMedCrossRefGoogle Scholar
  41. Hirose T, Nakano Y, Nagamatsu Y, Misumi T, Ohta H, Ohshima Y (2003) Cyclic GMP-dependent protein kinase EGL-4 controls body size and lifespan in C. elegans. Development 130: 1089–1099PubMedCrossRefGoogle Scholar
  42. Hofmann F, Feil R, Kleppisch T, Schlossmann J (2006) Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev 86:1–23PubMedCrossRefGoogle Scholar
  43. Horikawa K, Minami Y, Iijima M, Akiyama M, Shibata S (2005) RapID damping of food-entrained circadian rhythm of clock gene expression in clock-defective peripheral tissues under fasting conditions. Neuroscience 134:335–343PubMedCrossRefGoogle Scholar
  44. Ingram KK, Oefner P, Gordon DM (2005) Task-specific expression of the foraging gene in harvester ants. Mol Ecol 14:813–818PubMedCrossRefGoogle Scholar
  45. Jouvert P, Revel MO, Lazaris A, Aunis D, Langley K, Zwiller J (2004) Activation of the cGMP pathway in dopaminergic structures reduces cocaine-induced EGR-1 expression and locomotor activity. J Neurosci 24:10716PubMedCrossRefGoogle Scholar
  46. Kaun KR, Riedl CAL, Chakaborty-Chatterjee M, Belay AT, Douglas SJ, Gibbs AG, Sokolowski MB (2007a) Natural variation in food acquisition mediated via a Drosophila cGMP-dependent protein kinase. J Exp Biol 210:3547–3558CrossRefGoogle Scholar
  47. Kaun KR, Hendel T, Gerber B, Sokolowski MB (2007b) Natural variation in Drosophila larval reward learning and memory due to a cGMP-dependent protein kinase. Learn Mem 14: 342–349CrossRefGoogle Scholar
  48. Kleppisch T, Pfeifer A, Klatt P, Ruth P, Montkowski A, Fassler R, Hofmann F (1999) Long-term potentiation in the hippocampal CA1 region of mice lacking cGMP-dependent kinases is normal and susceptible to inhibition of nitric oxIDe synthase. J Neurosci 19:48–55PubMedGoogle Scholar
  49. Kleppisch T, Wolfsgruber W, Feil S, Allmann R, Wotjak CT, Goebbels S, Nave K-A, Hofmann F, Feil R (2003) Hippocampal cyclic GMP-dependent protein kinase I supports an age- and protein synthesis dependent component of long-term potentiation but is not essential for spatial reference and contextual memory. J Neurosci 23:6005–6012PubMedGoogle Scholar
  50. Lee G, Bahn JH, Park JH (2006) Sex- and clock-controlled expression of the neuropeptIDe F gene in Drosophila. Proc Natl Acad Sci 103:12580–12585PubMedCrossRefGoogle Scholar
  51. Liu L, Wolf R, Ernst R, Heisenberg M (1999) Context generalization in Drosophila visual learning requires the mushroom bodies. Nature 400:753–756PubMedCrossRefGoogle Scholar
  52. Mackay TFC (2004) The genetic architecture of quantitative traits: lessons from Drosophila. Curr Opin Genet Dev 14:253–257PubMedCrossRefGoogle Scholar
  53. Mathur A, Golombek DA, Ralph MR (1996) cGMP-dependent protein kinase inhibitors block light-induced phase advances of circadian rhythms in vivo. Am J Physiol Regul Integr Comp Physiol 270:R1031–R1036Google Scholar
  54. Mendoza J, Graff C, Dardente H, Pevet P, Challet E (2005) Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. J Neurosci 25:1514–1522PubMedCrossRefGoogle Scholar
  55. Mery F, Belay AT, So AK-C, Sokolowski MB, Kawecki TJ (2007) Natural polymorphism affecting learning and memory in Drosophila. Proc Natl Acad Sci 104:13051–13055PubMedCrossRefGoogle Scholar
  56. Mitchell-Olds T, Willis JH, Goldstein DB (2007) Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat Rev Genet 8:845–856CrossRefGoogle Scholar
  57. Newman AEM, Foerster M, Shoemaker KL, Robertson RM (2003) Stress-induced thermotolerance of ventilatory motor pattern generation in the locust, Locusta migratoria. J Insect Physiol 49:1039–1047PubMedCrossRefGoogle Scholar
  58. Osborne KA, Robichon A, Burgess E, Butland S, Shaw RA, Coulthard A, Pereira HS, Greenspan RJ, Sokolowski MB (1997) Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science 277:834–836PubMedCrossRefGoogle Scholar
  59. Osborne KA, de Belle JS, Sokolowski MB (2001) Foraging behaviour in Drosophila larvae: mushroom body ablation. Chem Senses 26:223–230PubMedCrossRefGoogle Scholar
  60. Oster H, Werner C, Magnone MC, Mayser H, Feil R, Seeliger MW, Hofmann F, Albrecht U (2003) cGMP-dependent protein kinase II modulates mPer1 and mPer2 gene induction and influences phase shifts of the circadian clock. Curr Biol 13:725–733PubMedCrossRefGoogle Scholar
  61. Pereira HS, Sokolowski MB (1993) Mutations in the larval foraging gene affect adult locomotory behavior after feeding in Drosophila melanogaster. Proc Natl Acad Sci 90:5044–5046PubMedCrossRefGoogle Scholar
  62. Pereira HS, MacDonald DE, Hilliker AJ, Sokolowski MB (1995) Chaser (Csr), a new gene affecting larval foraging behaviour in Drosophila melanogaster. Genetics 141:263–270PubMedGoogle Scholar
  63. Prasad NG, Shakarad M, Anitha D, Rajamani M, Joshi A (2001) Correlated responses to selection for faster development and early reproduction in Drosophila: the evolution of larval traits. Evolution 55:1363–1372PubMedGoogle Scholar
  64. Raizen DM, Cullison KM, Pack AI, Sundaram MV (2006) A novel gain-of-function mutant of the cyclic GMP-dependent protein kinase egl-4 affects multiple physiological processes in Caenorhabditis elegans. Genetics 173:177–187PubMedCrossRefGoogle Scholar
  65. Raizen DM, Zimmerman JE, Maycock MH, Ta UD, You YJ, Sundaram MV, Pack AI (2008) Lethargus is a Caenorhabditis elegans sleep-like state. Nature 451:569–572PubMedCrossRefGoogle Scholar
  66. Ramirez JM, Elsen FP, Robertson RM (1999) Long-term effects of prior heat shock on neuronal potassium currents recorded in a novel insect ganglion slice preparation. J Neurophysiol 81:795–802PubMedGoogle Scholar
  67. Riedl CAL, Neal SJ, Robichon A, Westwood JT, Sokolowski MB (2005) Drosophila soluble guanylyl cyclase mutants exhibit increased foraging locomotion: behavioral and genomic investigations. Behav Gen 35:231–244CrossRefGoogle Scholar
  68. Renger JJ, Yao WD, Sokolowski MB, Wu CF (1999) Neuronal polymorphism among natural alleles of a cGMP-dependent kinase gene, foraging, in Drosophila. J Neurosci 19:RC28PubMedGoogle Scholar
  69. Rodriguez L, Sokolowski MB, Shore JS (1992) Habitat selection by Drosophila melanogaster larvae. J Evol Biol 5:61–70CrossRefGoogle Scholar
  70. Sarov-Blat L, So WV, Liu L, Rosbash M (2000) The Drosophila takeout gene is a novel molecular link between circadian rhythms and feeding behavior. Cell 101:647–656CrossRefGoogle Scholar
  71. Sewell D, Burnet B, Connolly K (1975) Genetic analysis of larval feeding behavior in Drosophila melanogaster. Genet Res Cambr 24:163–173CrossRefGoogle Scholar
  72. Shettleworth SJ (2001) Animal cognition and animal behaviour. Anim Behav 61:277–286CrossRefGoogle Scholar
  73. Scheiner R, Barnert M, Erber J (2003) Variation in water and sucrose responsiveness during the foraging season affects proboscis extension learning in honey bees. ApIDologie 34:67–72CrossRefGoogle Scholar
  74. Scheiner R, Sokolowski MB, Erber J (2004) Activity of cGMP-dependent protein kinase (PKG) affects sucrose responsiveness and habituation in Drosophila melanogaster. Learn Mem 11: 303–311PubMedCrossRefGoogle Scholar
  75. SchmIDt H, Werner M, Heppenstall PA, Henning M, More MI, Kuhbandner S, Lewin GR, Hofmann F, Feil R, Rathjen FG (2002) cGMP-mediated signalling via cGKIalpha is required for the guIDance and connectivity of sensory axons. J Cell Biol 159:489–498PubMedCrossRefGoogle Scholar
  76. Shaver SA, Varnam CJ, Hilliker AJ, Sokolowski MB (1998) The foraging gene affects adult but not larval olfactory-related behavior in Drosophila melanogaster. Behav Brain Res 95:23–29PubMedCrossRefGoogle Scholar
  77. Shaver SA, Riedl CAL, Parkes TL, Sokolowski MB, Hilliker AJ (2000) Isolation of larval behavioural mutants in Drosophila melanogaster. J. Neurogenet. 14:193–205PubMedCrossRefGoogle Scholar
  78. Sokolowski MB (1980) Foraging strategies of Drosophila melanogaster: a chromosomal analysis. Behav Genet 10:291–302PubMedCrossRefGoogle Scholar
  79. Sokolowski MB (1982) Rover and sitter larval foraging patterns in a natural population of Drosophila melanogaster. Dros Inf Serv 58:130–139Google Scholar
  80. Sokolowski MB, Kent C, Wong J (1984) Drosophila larval foraging behaviour: developmental stages. Anim Behav 32:645–651CrossRefGoogle Scholar
  81. Sokolowski MB (1986) Ecological genetics and behaviour of Drosophila melanogaster larvae in nature. Anim Behav 34:403–408CrossRefGoogle Scholar
  82. Sokolowski MB (1987) Drosophila larval foraging behavior and correlated behaviors. In: Heuttel MD (ed.) Evolutionary genetics of invertebrate behavior. Plenum, NY, pp 197–213Google Scholar
  83. Sokolowski MB, Carton Y (1989) Microgeographic variation in Drosophila melanogaster larval behavior. J Insect Behav 2:138–139CrossRefGoogle Scholar
  84. Sokolowski MB, Pereira HS, Hughes K (1997) Evolution of foraging behavior in Drosophila by density-dependent selection. Proc Natl Acad Sci 94:7373–7377PubMedCrossRefGoogle Scholar
  85. Stamps JA, Buechner M, Alezander K, Davis J, Zuniga N (2005) Genotypic differences in space use and movement patterns in Drosophila melangoaster. Anim Behav 70:609–618CrossRefGoogle Scholar
  86. Strauss R, Heisenberg M (1993) A higher control center of locomotor behavior in the Drosophila brain. J Neurosci 13:1852–1861PubMedGoogle Scholar
  87. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493PubMedCrossRefGoogle Scholar
  88. Tegeder I, SchmIDtko A, Niederberger E, Ruth P, Geisslinger G (2002) Dual effects of spinally delivered 8-bromo-cyclic guanosine mono-phosphate (8-bromo-cGMP) in formalin-induced no-ciception in rats. Neurosci Lett 332:146–150PubMedCrossRefGoogle Scholar
  89. Tegeder I, Del Turco D, SchmIDtko A, Sausbier M, Feil R, Hofmann F, Deller T, Ruth P, and Geisslinger G (2004) Reduced inflammatory hyperalgesia with preservation of acute thermal nociception in mice lacking cGMP-dependent protein kinase I. Proc Natl Acad Sci 101: 3253–3257PubMedCrossRefGoogle Scholar
  90. Thompson RF, Spencer WA (1966) Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev 73:16–43PubMedCrossRefGoogle Scholar
  91. Tischkau SA, Weber ET, Abbott SM, Mitchell JW, and Gillette MU (2003) Circadian clock-controlled regulation of cGMP-protein kinase G in the nocturnal domain. J Neurosci 23: 7543–7550PubMedGoogle Scholar
  92. Tischkau SA, Mitchell JW, Pace LA, Barnes JW, Barnes JA, and Gillette MU (2004) Protein kinase G type II is required for night-to-day progression of the mammalian circadian clock. Neuron 43:539–549PubMedCrossRefGoogle Scholar
  93. Toth AL, Robinson GE (2007) Evo-devo and the evolution of social behavior. Trends Genet 23:334–341PubMedCrossRefGoogle Scholar
  94. Varnam CJ, Strauss R, de Belle JS, Sokolowski MB (1996) Larval behaviour of central complex mutants in Drosophila melanogaster: interactions between no brIDge, foraging and Chaser. J Neurogenetic 11:99–115CrossRefGoogle Scholar
  95. Vivancos GG, Parada CA, and Ferreira SH (2003) Opposite nociceptive effects of the arginine/NO/cGMP pathway stimulation in dermal and subcutaneous tissues. Br J Pharmacol 138:1351–1357PubMedCrossRefGoogle Scholar
  96. Wagner GP, Pavlicev M, Cheverud JM (2007) The road to modularity. Nat Rev Genet 8:921–931PubMedCrossRefGoogle Scholar
  97. Wang X, Robinson PJ (1997) Cyclic GMP-dependent protein kinase and cellular signalling in the nervous system. J. Neurochem 68:443–456PubMedCrossRefGoogle Scholar
  98. Wang Z, Pan Y, Li W, Jiang H, Chatzimanolis L, Chang J, Gong Z, Liu L (2008) Visual pattern memory requires foraging function in the central complex of Drosophila. Learn Mem 15: 133–142PubMedCrossRefGoogle Scholar
  99. Werner C, Raivich G, Cowen M, Strekalova T, Sillaber I, Buters JT, Spanagel R, Hofmann F (2004) Importance of NO/cGMP signalling via cGMP-dependent protein kinase II for controlling emotionality and neurobehavioural effects of alcohol. Eur J Neurosci 20:3498–3506PubMedCrossRefGoogle Scholar
  100. Wu CL, Xia S, Fu TF, Wang H, Chen YH, Leong D, Chiang AS, Tully T (2007) Specific requirement of NMDA receptors for long-term memory consolIDation in Drosophila ellipsoID body. Nat Neurosci 10:1578–1586PubMedCrossRefGoogle Scholar
  101. Zhuo M, Hu Y, Schultz C, Kandel ER, Hawkins RD (1994) Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation. Nature 368:635–639PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.Department of BiologyUniversity of TorontoMississaugaCanada

Personalised recommendations