Biomedical Application of Ca Stable Isotopes

  • Alexander HeuserEmail author
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)


This chapter summarizes the current knowledge on the Ca isotope composition of different tissues and Ca isotope cycling in the human and vertebrate body.  The known sites of Ca isotope fractionation and the calcium isotopic composition of different compartments and body fluids are discussed. The first part of this chapter follows the journey of Ca in the body from the input (diet) to the output (urine, feces). Finally, current biomedical applications of Ca isotopes for the detection of bone loss during bed rest studies and during bone cancer are presented.


Ca metabolism Diet Urine Blood Bed rest studies Bone loss Ca isotope transport model 


  1. Albarède F (2015) Metal stable isotopes in the human body: a tribute of geochemistry to medicine. Elements 11:265–269CrossRefGoogle Scholar
  2. Aramendía M, Rello L, Resano M et al (2013) Isotopic analysis of Cu in serum samples for diagnosis of Wilson’s disease: a pilot study. J Anal At Spectrom 28:675CrossRefGoogle Scholar
  3. Balter V, Lamboux A, Zazzo A et al (2013) Contrasting Cu, Fe, and Zn isotopic patterns in organs and body fluids of mice and sheep, with emphasis on cellular fractionation. Metallomics 5:1470–1482CrossRefGoogle Scholar
  4. Böhm F, Gussone N, Eisenhauer A et al (2006) Calcium isotope fractionation in modern scleractinian corals. Geochim Cosmochim Acta 70:4452–4462CrossRefGoogle Scholar
  5. Blume SW, Curtis JR (2011) Medical costs of osteoporosis in the elderly Medicare population. Osteoporos Int 22:1835–1844CrossRefGoogle Scholar
  6. Bootman MD, Collins TJ, Peppiatt CM et al (2001) Calcium signalling—an overview. Semin Cell Dev Biol 12:3–10CrossRefGoogle Scholar
  7. Bullen TD, Walczyk T (2009) Environmental and biomedical applications of natural metal stable isotope variations. Elements 5:381–385CrossRefGoogle Scholar
  8. Campbell AK (1990) Calcium as an intracellular regulator. Proc Nutr Soc 49:51–56CrossRefGoogle Scholar
  9. Channon MB, Gordon GW, Morgan JLL et al (2015) Using natural, stable calcium isotopes of human blood to detect and monitor changes in bone mineral balance. Bone 77:69–74CrossRefGoogle Scholar
  10. Chu N-C, Henderson GM, Belshaw NS et al (2006) Establishing the potential of Ca isotopes as proxy for consumption of dairy products. Appl Geochem 21:1656–1667CrossRefGoogle Scholar
  11. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(Suppl 3):S131–S139CrossRefGoogle Scholar
  12. Freeman SP, King JC, Vieira NE et al (1997) Human calcium metabolism including bone resorption measured with 41Ca tracer. Nucl Instrum Meth B 123:266–270CrossRefGoogle Scholar
  13. Gordon GW, Monge J, Channon MB et al (2014) Predicting multiple myeloma disease activity by analyzing natural calcium isotopic composition. Leukemia 28:2112–2115CrossRefGoogle Scholar
  14. Gussone N, Langer G, Thoms S et al (2006) Cellular calcium pathways and isotope fractionation in Emiliania huxleyi. Geology 34:625–628CrossRefGoogle Scholar
  15. Heuser A, Eisenhauer A (2010) A pilot study on the use of natural calcium isotope (44Ca/40Ca) fractionation in urine as a proxy for the human body calcium balance. Bone 46:889–896CrossRefGoogle Scholar
  16. Heuser A, Tütken T, Gussone N et al (2011a) Calcium isotopes in fossil bones and teeth—diagenetic versus biogenic origin. Geochim Cosmochim Acta 75:3419–3433CrossRefGoogle Scholar
  17. Heuser A, Frings-Meuthen P, Rittweger J et al (2011b) Calcium isotopes in human urine under simulated microgravity conditions. Miner Mag 75:1019Google Scholar
  18. Heuser A, Eisenhauser A, Scholz-Ahrens KE et al (2016) Biological fractionation of stable Ca isotopes in göttingen minipigs as a physiological model for Ca homeostasis in humans. Isot Environ Health Stud doi: 10.1080/10256016.2016.1151017 Google Scholar
  19. Hoenderop JGJ, Nilius B, Bindels RJM (2005) Calcium absorption across epithelia. Physiol Rev 85:373–422CrossRefGoogle Scholar
  20. Hotz K, Augsburger H, Walczyk T (2011) Isotopic signatures of iron in body tissues as a potential biomarker for iron metabolism. J Anal At Spec 26:1347–1353CrossRefGoogle Scholar
  21. Larner F, Woodley LN, Shousha S, Moyes A, Humphreys-Williams E, Strekopytov S, Halliday AN, Rehkämper M, Coombes RC (2015) Zinc isotopic compositions of breast cancer tissue. Metallomics: Integr Biometal Sci 7:112–117CrossRefGoogle Scholar
  22. Morgan JLL, Skulan JL, Gordon GW et al (2012) Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes. Proc Nat Acad Sci 109:9989–9994CrossRefGoogle Scholar
  23. Mundy GR, Guise TA (1999) Hormonal control of calcium homeostasis. Clin Chem 45:1347–1352Google Scholar
  24. Pasteris JD, Wopenka B, Valsami-Jones E (2008) Bone and tooth mineralization: why apatite? Elements 4:97–104CrossRefGoogle Scholar
  25. Peacock M (2010) Calcium metabolism in health and disease. Clin J Am Soc Nephrol 5(Suppl 1):S23–30CrossRefGoogle Scholar
  26. Reynard LM, Henderson GM, Hedges REM (2010) Calcium isotope ratios in animal and human bone. Geochim Cosmochim Acta 74:3735–3750CrossRefGoogle Scholar
  27. Schmitt AD, Cobert F, Bourgeade P et al (2013) Calcium isotope fractionation during plant growth under a limiting nutrient supply. Geochim Cosmochim Acta 110:70–83CrossRefGoogle Scholar
  28. Skulan JL, DePaolo DJ (1999) Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates. Proc Nat Acad Sci 96:13709–13713CrossRefGoogle Scholar
  29. Skulan J, Bullen TD, Anbar AD et al (2007) Natural calcium isotopic composition of urine as a marker of bone mineral balance. Clin Chem 53:1155–1158CrossRefGoogle Scholar
  30. Tacail T, Albalat E, Télouk P et al (2014) A simplified protocol for measurement of Ca isotopes in biological samples. J Anal At Spectrom 29:529–535CrossRefGoogle Scholar
  31. VanHouten JN, Mysolmersky JJ (2007) Transcellular calcium transport in mammary epithelial cells. J Mammary Gland Biol 12:223–235CrossRefGoogle Scholar
  32. Walczyk T, von Blanckenburg F (2002) Natural iron isotope variations in human blood. Science 295:2065–2066CrossRefGoogle Scholar
  33. Walczyk T, von Blanckenburg F (2005) Deciphering the iron isotope message of the human body. Int J Mass Spectrom 242:117–134CrossRefGoogle Scholar
  34. WHO Scientific Group on the Prevention and Management of Osteoporosis (2003) Prevention and management of osteoporosis. World Health Organization, GenevaGoogle Scholar
  35. Wiegand BA, Chadwick OA, Vitousek PM et al (2005) Ca cycling and isotopic fluxes in forested ecosystems in Hawaii. Geophys Res Lett 32:L11404. doi: 10.1029/2005GL022746 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Steinmann-Institut für Geologie, Mineralogie und PaläontologieUniversität BonnBonnGermany

Personalised recommendations