Biominerals and Biomaterial

  • Nikolaus GussoneEmail author
  • Alexander Heuser
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)


Biominerals are important archives for various paleo-environmental proxies, and consequently, the understanding of biomineralisation related element and isotope fractionation is vital for reliable climate reconstructions. The Ca isotope composition of biominerals has been investigated to explore its potential for paleo-environmental reconstructions and to better understand biomineralisation processes. The overall range of Ca isotope fractionation reported for biominerals resembles that of inorganic minerals, but shows different responses to changes of environmental parameters such as fluid composition and growth rates. In this chapter, we review Ca isotope fractionation characteristics of biominerals from different taxa with respect to biomineralisation processes and potential proxy applications. Available data of alkaline earth metal isotope systems (Mg, Sr) are included for comparison.


Biomineralisation Trophic level effect Foraminifers Coccolithophores Dinoflagellates Corals Sclerosponges Coralline algae Brachiopods Mollusks 


  1. Allison N, Finch AA, EIMF (2010) δ11B, Sr, Mg and B in a modern Porites coral: the relationship between calcification site pH and skeletal chemistry. Geochim Cosmochim Acta 74:1790–1800Google Scholar
  2. Amini M, Eisenhauer A, Böhm F et al (2009) Calcium Isotopes (δ44/40Ca) in MPI-DING reference glasses, USGS rock powders and various rocks: evidence for Ca isotope fractionation in terrestrial silicates. Geostand Geoanal Res 33:231–247CrossRefGoogle Scholar
  3. Blättler CL, Henderson GM, Jenkyns HC (2012) Explaining the Phanerozoic Ca isotope history of seawater. Geology 40:843–846CrossRefGoogle Scholar
  4. Blättler CL, Stanley SM, Henderson GM et al (2014) Identifying vital effects in Halimeda algae with Ca isotopes. Biogeosci Discuss 11:3559–3580CrossRefGoogle Scholar
  5. Böhm F, Gussone N, Eisenhauer A et al (2006) Calcium isotope fractionation in modern scleractinian corals. Geochim Cosmochim Acta 70:4452–4462CrossRefGoogle Scholar
  6. Böhm F, Eisenhauer A, Tang J et al (2012) Strontium isotope fractionation of planktic foraminifera and inorganic calcite. Geochim Cosmochim Acta 93:300–314CrossRefGoogle Scholar
  7. Boskey AL (2007) Biomineralization of bones and teeth. Elements 3:385–391CrossRefGoogle Scholar
  8. Broska J (2011) Ernährungsrekonstruktion für terrestrische Wirbeltier. Diploma thesis, Universität Mainz (unpublished)Google Scholar
  9. Chang VT-C, Williams RJP, Makishima A et al (2004) Mg and Ca isotope fractionation during CaCO3 biomineralisation. Biochem Bioph Res Co 323:79–85CrossRefGoogle Scholar
  10. Chu N-C, Henderson GM, Belshaw NS et al (2006) Establishing the potential of Ca isotopes as proxy for consumption of dairy products. Appl Geochem 21:1656–1667CrossRefGoogle Scholar
  11. Clementz MT, Holden P, Koch PL (2003) Are calcium isotopes a reliable monitor of trophic level in marine settings? Int J Osteoarchaeol 13:29–36CrossRefGoogle Scholar
  12. Cobert F, Schmitt A-D, Bourgeade P et al (2011) Experimental identification of Ca isotopic fractionations in higher plants. Geochim Cosmochim Acta 75:5467–5482CrossRefGoogle Scholar
  13. De La Rocha CL, DePaolo DJ (2000) Isotopic evidence for variations in the marine calcium cycle over the cenozoic. Science 289:1176–1178CrossRefGoogle Scholar
  14. de Nooijer LJ, Spero HJ, Erez J et al (2014) Biomineralization in perforate foraminifera. Earth-Sci Rev 135:48–58CrossRefGoogle Scholar
  15. Elderfield H, Bertram CJ, Erez J (1996) A biomineralization model for the incorporation of trace elements into foraminiferal calcium carbonate. Earth Planet Sci Lett 142:409–423CrossRefGoogle Scholar
  16. Erez J (2003) The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. Rev Min Geochem 54:115–149CrossRefGoogle Scholar
  17. Farkaš J, Buhl D, Blenkinsop J et al (2007) Evolution of the oceanic calcium cycle during the late Mesozoic: evidence from δ44/40Ca of marine skeletal carbonates. Earth Planet Sci Lett 253:96–111CrossRefGoogle Scholar
  18. Fietzke J, Eisenhauer A (2006) Determination of temperature-dependent stable strontium isotope (88Sr/86Sr) fractionation via bracketing standard MC-ICP-MS. Geochem Geophys Geosyst 7. doi: 10.1029/2006GC001243 Google Scholar
  19. Foster L, Finch A, Allison N et al (2008) Mg in aragonitic bivalve shells: seasonal variations and mode of incorporation in Arctica islandica. Chem Geol 254:113–119CrossRefGoogle Scholar
  20. Galy A, Bar-Matthews M, Halicz L et al (2002) Mg isotopic composition of carbonate: insight from spelothem formation. Earth Planet Sci Lett 201:105–115CrossRefGoogle Scholar
  21. Griffith EM, Paytan A, Kozdon R et al (2008) Influences on the fractionation of calcium isotopes in planktonic foraminifera. Earth Planet Sci Lett 268:124–136CrossRefGoogle Scholar
  22. Gussone N, Filipsson HL (2010) Calcium isotope ratios in calcitic tests of benthic Foraminifers. Earth Planet Sci Lett 290:108–117CrossRefGoogle Scholar
  23. Gussone N, Eisenhauer A, Heuser A et al (2003) Model for kinetic effects on calcium isotope fractionation (δ44Ca) in inorganic aragonite and cultured planktonic foraminifera. Geochim Cosmochim Acta 67:1375–1382CrossRefGoogle Scholar
  24. Gussone N, Eisenhauer A, Tiedemann R et al (2004) δ44Ca, δ18O and Mg/Ca reveal caribbean sea surface temperature and salinity fluctuations during the pliocene closure of the Central-American Gateway. Earth Planet Sci Lett 227:201–214CrossRefGoogle Scholar
  25. Gussone N, Böhm F, Eisenhauer A et al (2005) Calcium isotope fractionation in calcite and aragonite. Geochim Cosmochim Acta 69:4485–4494CrossRefGoogle Scholar
  26. Gussone N, Langer G, Thoms S et al (2006) Cellular calcium pathways and isotope fractionation in Emiliania huxleyi. Geology 34:625–628CrossRefGoogle Scholar
  27. Gussone N, Langer G, Geisen M et al (2007) Calcium isotope fractionation in coccoliths of cultured Calcidiscus leptoporus, Helicosphaera carteri, Syracosphaera pulchra and Umbilicosphaera foliosa. Earth Planet Sci Lett 260:505–515CrossRefGoogle Scholar
  28. Gussone N, Hönisch B, Heuser A et al (2009) A critical evaluation of calcium isotope ratios in tests of planktonic foraminifers. Geochim Cosmochim Acta 73:7241–7255CrossRefGoogle Scholar
  29. Gussone N, Zonnefeld K, Kuhnert H (2010) Minor element and Ca isotope composition of calcareous dinoflagellate cysts of Thoracosphaera heimii. Earth Planet Sci Lett 289:180–188CrossRefGoogle Scholar
  30. Gussone N, Filipsson HL, Kuhnert H (2016) Mg/Ca, Sr/Ca and Ca isotope ratios in benthonic foraminifers related to test structure, mineralogy and environmental controls. Geochim Cosmochim ActaGoogle Scholar
  31. Haase-Schramm A, Böhm F, Eisenhauer A et al (2003) Sr/Ca ratios and oxygen isotopes from sclerosponges: temperature history of the Caribbean mixed layer and thermocline during the Little Ice Age. Paleoceanography 18. doi: 10.1029/2002PA000830 Google Scholar
  32. Halicz L, Galy A, Belshaw NS et al (1999) High-precision measurement of calcium isotopes in carbonates and related materials by multiple collector inductively coupled plasma mass spectrometry. J Anal At Spec 14:1835–1838Google Scholar
  33. Heinemann A, Fietzke J, Eisenhauer A et al (2008) Modification of Ca isotope and trace metal composition of the major matrices involved in shell formation of Mytilus edulis. Geochem Geophys Geosyst 9:Q01006. doi: 10.1029/2007GC001777 CrossRefGoogle Scholar
  34. Heuser A, Eisenhauer A, Böhm F et al (2005) Calcium isotope (δ44/40Ca) variations of neogene planktonic foraminifera. Paleoceanography 20:PA2013. doi: 10.1029/2004PA001048 Google Scholar
  35. Heuser A, Eisenhauer A (2010) A pilot study on the use of natural calcium isotope (44Ca/40Ca) fractionation in urine as a proxy for the human body calcium balance. Bone 46:889–896Google Scholar
  36. Heuser A, Tütken T, Gussone N et al (2011) Calcium isotopes in fossil bones and teeth—diagenetic versus biogenic origin. Geochim Cosmochim Acta 75:3419–3433CrossRefGoogle Scholar
  37. Hiebenthal C (2009) Sensitivity of A. islandica and M. edulis towards environmental changes: a threat to the bivalves—an opportunity for palaeo-climatology? PhD thesis, Christian-Albrechts-Universität Kiel, pp 1–138Google Scholar
  38. Hildebrand-Habel T, Willems H (2000) Distribution of calcareous dinoflagellates from the Maastrichtian to middle Eocene of the western South Atlantic Ocean. Int J Earth Sci 88:694–707CrossRefGoogle Scholar
  39. Hippler D, Eisenhauer A, Nägler TF (2006) Tropical Atlantic SST history inferred from Ca isotope thermometry over the last 140ka. Geochim Cosmochim Acta 70:90–100CrossRefGoogle Scholar
  40. Hippler D, Kozdon R, Darling KF et al (2009a) Calcium isotopic composition of high-latitude proxy carrier Neogloboquadrina pachyderma (sin.). Biogeosciences 6:1–14CrossRefGoogle Scholar
  41. Hippler D, Buhl D, Witbaard R et al (2009b) Towards a better understanding of magnesium-isotope ratios from marine skeletal carbonates. Geochim Cosmochim Acta 73:6134–6146CrossRefGoogle Scholar
  42. Hippler D, Witbaard R, van Aken HM et al (2013) Exploring the calcium isotope signature of Arctica islandica as an environmental proxy using laboratory- and field-cultured specimens. Palaeogeogr Palaeoclimatol Palaeoecol 373:75–87CrossRefGoogle Scholar
  43. Hirata T, Tanoshima M, Suga A et al (2008) Isotopic analysis of calcium in blood plasma and bone from mouse samples by multiple collector-ICP-mass spectrometry. Anal Sci 24:1501–1507CrossRefGoogle Scholar
  44. Holmden C, Bélanger N (2010) Ca isotope cycling in a forested ecosystem. Geochim Cosmochim Acta 74:995–1015CrossRefGoogle Scholar
  45. Holmden C, Papanastassiou DA, Blanchon P et al (2012) δ44/40Ca variability in shallow water carbonates and the impact of submarine groundwater discharge on Ca-cycling in marine environments. Geochim Cosmochim Acta 83:179–194CrossRefGoogle Scholar
  46. Immenhauser A, Nägler TF, Steuber T et al (2005) A critical assessment of mollusk 18O/16O, Mg/Ca, and 44Ca/40Ca ratios as proxies for Cretaceous seawater temperature seasonality. Palaeogeogr Palaeoclimatol Palaeoecol 215:221–237CrossRefGoogle Scholar
  47. Inoue M, Gussone N, Koga Y et al (2015) Controlling factors of Ca isotope fractionation in scleractinian corals evaluated by temperature, pH and light controlled culture experiments. Geochim Cosmochim Acta 167:80–92CrossRefGoogle Scholar
  48. Inouye I, Pienaar RN (1983) Observations on the life cycle and microanatomy of Thoracosphaera heimii (Dinophyceae) with special reference to its systematic position. S AfrJ Bot 2:63–75Google Scholar
  49. Jochum KP, Stoll B, Herwig K et al (2006) MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem Geophys Geosyst 7:1–44. doi: 10.1029/2005GC001060 CrossRefGoogle Scholar
  50. John T, Gussone N, Podladchikov YY et al (2012) Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nat Geosci 5:489–492CrossRefGoogle Scholar
  51. Kasemann SA, Schmidt DN, Pearson PN et al (2008) Biological and ecological insights into Ca isotopes in planktic foraminifers as a palaeotemperature proxy. Earth Planet Sci Lett 271:292–302CrossRefGoogle Scholar
  52. Kisakürek B, Eisenhauer A, Böhm F et al (2011) Controles on calcium isotope fractionation in cultured planktic foraminifera, Globigerinoides ruber and Globigerinella siphonifera. Geochim Cosmochim Acta 75:427–443CrossRefGoogle Scholar
  53. Krabbenhöft A (2011) Stable strontium isotope (δ88/86Sr) fractionation in the marine realm: a pilot study. PhD thesis, Christian-Albrechts-Universität KielGoogle Scholar
  54. Krabbenhöft A, Eisenhauer A, Böhm F et al (2010) Constraining the marine strontium budget with natural strontium isotope fractionations (87Sr/86Sr*, δ88/86Sr) of carbonates, hydrothermal solutions and river waters. Geochim Cosmochim Acta 74:4097–4109CrossRefGoogle Scholar
  55. Krause S, Liebetrau V, Gorb S et al (2012) Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: new insight into an old enigma. Geology 40:587–590CrossRefGoogle Scholar
  56. Langer G, Gussone N, Nehrke G et al (2006) Coccolith strontium to calcium ratios in Emiliania huxleyi: the dependence on seawater strontium and calcium concentrations. Limnol Oceanogr 51:310–320Google Scholar
  57. Langer G, Gussone N, Nehrke G et al (2007) Calcium isotope fractionation during coccolith formation in Emiliania huxleyi: independence of growth and calcification rate. Geochem Geophysi Geosys 8:Q05007. doi: 10.1029/2006GC001422 CrossRefGoogle Scholar
  58. Lemarchand D, Wasserburg GJ, Papanastassiou DA (2004) Rate-controlled calcium isotope fractionation in synthetic calcite. Geochim Cosmochim Acta 68:4665–4678CrossRefGoogle Scholar
  59. Marriott CS, Henderson GM, Belshaw NS et al (2004) Temperature dependence of δ7Li, δ44Ca and Li/Ca during growth of calcium carbonate. Earth Planet Sci Lett 222:615–624CrossRefGoogle Scholar
  60. Martin JE, Vance D, Balter V (2014) Natural variation of magnesium isotopes in mammal bones and teeth from two South African trophic chains. Geochim Cosmochim Acta 130:12–20CrossRefGoogle Scholar
  61. Martin JE, Tacail T, Adnet T et al (2015) Calcium isotopes reveal the trophic position of extant and fossil elasmobranchs. Chem Geol 415:118–125CrossRefGoogle Scholar
  62. Meisterfeld R, Holzmann M, Pawlowski J (2001) Morphological and molecular characterization of a new terrestrial allogromiid species: Edaphoallogromia australica gen. et spec. nov. (Foraminifera) from Northern Queensland (Australia). Protist 152:185–192CrossRefGoogle Scholar
  63. Middelberg U, Gussone N, Becker RT et al (unpubl) An evaluation of cephalopod shells as geochemical proxy archivesGoogle Scholar
  64. Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochem Cy 7:927–957CrossRefGoogle Scholar
  65. Müller MN, Kisakürek B, Buhl D et al (2011) Response of the coccolithophores Emiliania huxleyi and Coccolithus braarudii to changing seawater Mg2+ and Ca2+ concentrations: Mg/Ca, Sr/Ca ratios and δ44/40Ca, δ26/24Mg of coccolith calcite. Geochim Cosmochim Acta 75:2088–2102CrossRefGoogle Scholar
  66. Nägler TF, Eisenhauer A, Müller A et al (2000) δ44Ca-temperature calibration on fossil and cultured Globigerinoides sacculifer: new tool for reconstruction of past sea surface temperatures. Geochem Geophys Geosyst 1. doi: 10.1029/2000GC000091 Google Scholar
  67. Page BD, Bullen TD, Mitchell MJ (2008) Influences of calcium availability and tree species on Ca isotope fractionation in soil and vegetation. Biogeochemistry 88:1–13CrossRefGoogle Scholar
  68. Pasteris JD, Wopenka B, Valsami-Jones E (2008) Bone and tooth mineralization: why apatite? Elements 4:97–104CrossRefGoogle Scholar
  69. Pawlowski J, Holzmann M, Berney C et al (2003) The evolution of early foraminifera. PNAS 100:11494–11498CrossRefGoogle Scholar
  70. Pogge von Strandmann PAE (2008) Precise magnesium isotope measurements in core top planktic and benthic foraminifera. Geochem Geophys Geosyst 9:Q12015. doi: 10.1029/2008GC002209 CrossRefGoogle Scholar
  71. Pretet C, Samankassou E, Felis T et al (2013) Constraining calcium isotope fractionation (δ44/40Ca) in modern and fossil scleractinian coral skeleton. Chem Geol 340:49–58CrossRefGoogle Scholar
  72. Ra K, Kitagawa H, Shiraiwa Y (2010) Mg isotopes in chlorophyll-a and coccoliths of cultured coccolithophores (Emiliania huxleyi) by MC-ICP-MS. Mar Chem 122:130–137CrossRefGoogle Scholar
  73. Raddaz J, Liebetrau V, Rüggeberg A et al (2013) Stable Sr-isotope, Sr/Ca, Mg/Ca, Li/Ca and Mg/Li ratios in the scleractinian cold-water coral Lophelia pertusa. Chem Geol 352:143–152CrossRefGoogle Scholar
  74. Reynard LM, Hedges REM, Henderson GM (2008) Stable calcium isotope ratios (δ44/42Ca) in bones and teeth for the detection of dairying by ancient humans. Geochim Cosmochim Acta 12:A790Google Scholar
  75. Reynard LM, Henderson GM, Hedges REM (2010) Calcium isotope ratios in animal and human bone. Geochim Cosmochim Acta 74:3735–3750CrossRefGoogle Scholar
  76. Reynard LM, Henderson GM, Hedges REM (2011) Calcium isotopes in archaeological bones and their relationships to dairy consumption. J Archaeol Sci 38:657–664CrossRefGoogle Scholar
  77. Reynard LM, Pearce JA, Henderson GM et al (2013) Calcium isotopes in juvenile milk-consumers. Archaeometry 55:946–957CrossRefGoogle Scholar
  78. Rollion-Bard C, Vigier N, Spezzaferri S (2007) In situ measurements of calcium isotopes by ion microprobe in carbonates and application to foraminifera. Chem Geol 244:679–690CrossRefGoogle Scholar
  79. Rüggeberg A, Fietzke J, Liebetrau V et al (2008) Stable strontium isotopes (δ88/86Sr) in cold-water corals—a new proxy for reconstruction of intermediate ocean water temperatures. Earth Planet Sci Lett 269:570–575CrossRefGoogle Scholar
  80. Russell WA, Papanastassiou DA, Tombrello TA (1978) Ca isotope fractionation on the Earth and other solar system materials. Geochim Cosmochim Acta 42:1075–1090Google Scholar
  81. Sime NG, De La Rocha CL, Galy A (2005) Negligible temperature dependence of calcium isotope fractionation in 12 species of planktonic foraminifera. Earth Planet Sci Lett 232:51–66CrossRefGoogle Scholar
  82. Sime NG, De La Rocha CL, Tipper ET et al (2007) Interpreting the Ca isotope record of marine biogenic carbonates. Geochimica et Cosmochimica Acta 71:3979–3989Google Scholar
  83. Skulan JL, DePaolo DJ (1999) Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates. Proc Nat Acad Sci 96:13709–13713CrossRefGoogle Scholar
  84. Skulan J, DePaolo DJ, Owens TL (1997) Biological control of calcium isotopic abundances in the global calcium cycle. Geochim Cosmochim Acta 61:2505–2510CrossRefGoogle Scholar
  85. Stenzel HB (1964) Oysters: composition of the larval shell. Science 145:155–156CrossRefGoogle Scholar
  86. Steuber T, Buhl D (2006) Calcium-isotope fractionation in selected modern and ancient marine carbonates. Geochim Cosmochim Acta 70:5507–5521CrossRefGoogle Scholar
  87. Tang J, Dietzel M, Böhm F et al (2008) Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: II. Ca isotopes. Geochim Cosmochim Acta 72:3733–3745CrossRefGoogle Scholar
  88. Tang J, Niedermayr A, Köhler SJ et al (2012) Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: III. Impact of salinity/ionic strength. Geochim Cosmochim Acta 77:432–443CrossRefGoogle Scholar
  89. Taubner I, Böhm F, Eisenhauer A et al (2012) Uptake of alkaline earth metals in Alcyonarian spicules (Octocorallia). Geochim Cosmochim Acta 84:239–255CrossRefGoogle Scholar
  90. Teichert BMA, Meister P, Mavromatis V et al (submitted) Early diagenetic, primary dolomite formation on the Peru Margin—insights from Ca and Mg isotopes. Submitted to Geochim Cosmochim ActaGoogle Scholar
  91. ter Kuile BT (1991) Mechanisms for calcification and carbon cycling in algal symbiont-bearing foraminifera. In: Lee JL, Anderson OR (eds) Biology of foraminifera. Academic Press, London, pp 74–89, 73–90Google Scholar
  92. Ullmann CV, Böhm F, Rickaby REM et al (2013) The Giant Pacific Oyster (Crassostrea gigas) as a modern analog for fossil ostreoids: isotopic (Ca, O, C) and elemental (Mg/Ca, Sr/Ca, Mn/Ca) proxies. Geochem Geophys Geosyst 14:4109–4120. doi: 10.1002/ggge.20257 CrossRefGoogle Scholar
  93. Veizer J, Ala D, Azmy K et al (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88Google Scholar
  94. von Allmen K, Nägler TF, Pettke T et al (2010) Stable isotope profiles (Ca, O, C) through modern brachiopod shells of T. septentrionalis and G. vitreus: implications for calcium isotope paleo-ocean chemistry. Chem Geol 269:210–219CrossRefGoogle Scholar
  95. Wang SH, Yan W, Magalhães HV et al (2012) Calcium isotope fractionation and its controlling factors of authigenic carbonates in the cold seeps from the Northern South China Sea. Chinese Sci Bull 57:1325–1332CrossRefGoogle Scholar
  96. Wang S, Yan W, Magalhães HV et al (2013a) Factors influencing methane-derived authigenic carbonate formation at cold seep from southwestern Dongsha area in the northern South China. Environ Earth Sci. doi: 10.1007/s12665-013-2611-9 Google Scholar
  97. Wang Z, Hu P, Gaetani G et al (2013b) Experimental calibration of Mg isotope fractionation between aragonite and seawater. Geochim Cosmochim Acta 102:113–123CrossRefGoogle Scholar
  98. Wiegand BA, Chadwick OA, Vitousek PM et al (2005) Ca cycling and isotopic fluxes in forested ecosystems in Hawaii. Geophys Res Lett 32:L11404. doi: 10.1029/2005GL022746 CrossRefGoogle Scholar
  99. Wombacher F, Eisenhauer A, Böhm F et al (2011) Magnesium stable isotope fractionation in marine biogenic calcite and aragonite. Geochim Cosmochim Acta 75:5797–5818CrossRefGoogle Scholar
  100. Yoshimura T, Tanimizu M, Inoue M et al (2011) Mg isotope fractionation in biogenic carbonates of deep-sea coral, benthic foraminifera, and hermatypic coral. Anal Bioanal Chem. doi: 10.1007/s00216-011-5264-0 Google Scholar
  101. Zhu P (1999) Calcium isotopes in the marine environment. PhD-thesis, University of CaliforniaGoogle Scholar
  102. Zhu P, Macdougall D (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim Cosmochim Acta 62:1691–1698CrossRefGoogle Scholar
  103. Zonneveld KAF (2004) Potential use of stable oxygen isotope composition of Thoracosphaera heimii for upper water column (thermocline) temperature reconstruction. Mar Micropal 50:307–317CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institut für MineralogieUniversität MünsterMünsterGermany
  2. 2.Steinmann-Institut für Geologie, Mineralogie und PaläontologieUniversity of BonnBonnGermany

Personalised recommendations