Advertisement

Dakota – Hashing from a Combination of Modular Arithmetic and Symmetric Cryptography

  • Ivan B. Damgård
  • Lars R. Knudsen
  • Søren S. Thomsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5037)

Abstract

In this paper a cryptographic hash function is proposed, where collision resistance is based upon an assumption that involves squaring modulo an RSA modulus in combination with a one-way function that does not compress its input, and may therefore be constructed from standard techniques and assumptions. We are not able to reduce collision finding to factoring, but on the other hand, our hash function is more efficient than any known construction that makes use of modular squaring.

Keywords

Hash Function Block Cipher Compression Function Message Block Cryptographic Hash Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions of SHA-0 and Reduced SHA-1. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 36–57. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Boneh, D., Franklin, M.K.: Efficient Generation of Shared RSA Keys (Extended Abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 425–439. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)Google Scholar
  5. 5.
    Charles, D., Goren, E., Lauter, K.: Cryptographic Hash Functions from Expander Graphs. In: NIST Second Cryptographic Hash Workshop, Corwin Pavilion, UCSB Santa Barbara, California, USA, August 24–25 (2006), http://csrc.nist.gov/groups/ST/hash/documents/LAUTER_HashJuly27.pdf [2008/1/14]
  6. 6.
    Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically Strong Undeniable Signatures, Unconditionally Secure for the Signer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 470–484. Springer, Heidelberg (1992)Google Scholar
  7. 7.
    Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an Efficient and Provable Collision-Resistant Hash Function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 165–182. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Dai, W.: Crypto++® Library 5.5.2 (2007), http://www.cryptopp.com [2008/1/11]
  9. 9.
    Damgård, I.: Collision Free Hash Functions and Public Key Signature Schemes. In: Chaum, D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 203–216. Springer, Heidelberg (1988)Google Scholar
  10. 10.
    Damgård, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)Google Scholar
  11. 11.
    Dobbertin, H.: Cryptanalysis of MD4. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 53–69. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    Finiasz, M., Gaborit, P., Sendrier, N.: Improved fast syndrome based cryptographic hash function. In: ECRYPT Hash Workshop, Barcelona, Spain, May 24–25 (2007), http://events.iaik.tugraz.at/HashWorkshop07/papers/Finiasz_ImprovedFastSyndromeBasedCryptographicHashFunction.pdf [2008/1/3]
  13. 13.
    The GNU MP Bignum Library (2007), http://gmplib.org [2008/3/25]
  14. 14.
    Charles, D., Goren, E., Lauter, K.: Cryptographic Hash Functions from Expander Graphs. In: NIST Second Cryptographic Hash Workshop, Corwin Pavilion, UCSB Santa Barbara, California, USA, August 24–25 (2006), http://csrc.nist.gov/groups/ST/hash/documents/LAUTER_HashJuly27.pdf [2008/1/14]zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    ISO/IEC 10118-4:1998, Information technology – Security techniques – Hash-functions – Part 4: Hash-functions using modular arithmeticGoogle Scholar
  16. 16.
    Kargl, A., Meyer, B., Wetzel, S.: On the Performance of Provably Secure Hashing with Elliptic Curves. International Journal of Computer Science and Network Security 7(10), 1–7 (2007)Google Scholar
  17. 17.
    Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: A Modest Proposal for FFT Hashing. In: Nyberg, K. (ed.) Fast Software Encryption 2008, Proceedings. LNCS, Springer (to appear, 2008)Google Scholar
  18. 18.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  19. 19.
    Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)Google Scholar
  20. 20.
    Montgomery, P.L.: Modular Multiplication Without Trial Division. Mathematics of Computation 44(170), 519–521 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    National Institute of Standards and Technology. FIPS PUB 180-1, Secure Hash Standard, April 17 (1995)Google Scholar
  22. 22.
    National Institute of Standards and Technology. FIPS PUB 180-2, Secure Hash Standard, August 1 (2002)Google Scholar
  23. 23.
    National Institute of Standards and Technology. Special Publication 800-57. Recommendation for Key Management – Part 1: General (revised) (March 2007)Google Scholar
  24. 24.
    Rivest, R.L.: The MD5 Message-Digest Algorithm, RFC 1321 (April 1992)Google Scholar
  25. 25.
    Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Communications of the ACM 21(2), 120–126 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    RSA Laboratories. PKCS #1: RSA Cryptography Standard (Version 2.1, June 14, 2002), http://www.rsa.com/rsalabs/node.asp?id=2125 [2008/1/3].
  27. 27.
    Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions MD4 and RIPEMD. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 1–18. Springer, Heidelberg (2005)Google Scholar
  28. 28.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)Google Scholar
  29. 29.
    Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ivan B. Damgård
    • 1
  • Lars R. Knudsen
    • 2
  • Søren S. Thomsen
    • 2
  1. 1.Department of Computer ScienceUniversity of AarhusAarhus NDenmark
  2. 2.Department of MathematicsTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations