Advertisement

On the Security of the CCM Encryption Mode and of a Slight Variant

  • Pierre-Alain Fouque
  • Gwenaëlle Martinet
  • Frédéric Valette
  • Sébastien Zimmer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5037)

Abstract

In this paper, we present an analysis of the CCM mode of operations and of a slight variant. CCM is a simple and efficient encryption scheme which combines a CBC-MAC authentication scheme with the counter mode of encryption. It is used in several standards. Despite some criticisms (mainly this mode is not online, and requires non-repeating nonces), it has nice features that make it worth to study.

One important fact is that, while the privacy of CCM is provably garanteed up to the birthday paradox, the authenticity of CCM seems to be garanteed beyond that. There is a proof by Jonsson up to the birthday paradox bound, but going beyond it seems to be out of reach with current techniques. Nevertheless, by using pseudo-random functions and not permutations in the counter mode and an authentication key different from the privacy key, we prove security beyond the birthday paradox.

We also wonder if the main criticisms against CCM can be avoided: what is the security of the CCM mode when the nonces can be repeated, (and) when the length of the associated data or message length is missing to make CCM on-line. We show generic attacks against authenticity in these cases. The complexity of these attacks is under the birthday paradox bound. It shows that the lengths of the associated data and the message, as well as the nonces that do not repeat are important elements of the security of CCM and cannot be avoided without significantly decreasing the security.

Keywords

CCM CBC-MAC Counter mode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M.: New Proofs for NMAC and HMAC: Security Without Collision-Resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of symmetric encryption. In: 38th FOCS, October 1997, pp. 394–403. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  3. 3.
    Bellare, M., Goldreich, O., Mityagin, A.: The Power of Verification Queries in Message Authentication and Authenticated Encryption. Eprint cryptology archive 2004/309 (2004), http://eprint.iacr.org
  4. 4.
    Bellare, M., Impagliazzo, R.: A Tool for Obtaining Tighter Security Analyses of Pseudorandom Function Based Constructions, With Applications to PRF-PRP conversion. Crytology ePrint archive, Report 1999/024, http://eprint.iacr.org
  5. 5.
    Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Pietrzak, K., Rogaway, P.: Improved security analyses for CBC MACs. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 527–545. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B.K., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Dodis, Y., Gennaro, R., Håstad, J., Krawczyk, H., Rabin, T.: Randomness extraction and key derivation using the CBC, cascade and HMAC modes. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Dolev, D., Dwork, C., Naor, M.: Non-Malleable Cryptography. In: Proc. of the 23rd STOC, ACM Press, New York (1991)Google Scholar
  10. 10.
    Dworkin, N.M.: Recommendation for Block Cipher Modes of Operation: The CCM Mode for Authentication and Confidentiality, NIST Special Publication 800-38C (May 2002)Google Scholar
  11. 11.
    Hall, C., Wagner, D., Kelsey, J., Schneier, B.: Building PRFs from PRPs. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 370–389. Springer, Heidelberg (1998)Google Scholar
  12. 12.
    Jonsson, J.: On the security of CTR + CBC-MAC. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 76–93. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Jutla, C.: Encryption Modes with Almost Free Message Integrity. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 529–544. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Katz, J., Yung, M.: Characterization of security notions for probabilistic private-key encryption. Journal of Cryptology 19(1), 67–95 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Krawczyk, H.: The order of encryption and authentication for protecting communications (or: How secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 310–331. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Lucks, S.: The Sum of PRP is a Secure PRF. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 470–484. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A block-cipher mode of operation for efficient authenticated encryption. In: ACM CCS 2001, pp. 196–205. ACM Press, New York (November 2001)CrossRefGoogle Scholar
  18. 18.
    Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: A Block-Cipher Mode of Operation for Efficient Authenticated Encryption. In: Proceedings of the 8th Conference on Computer and Communications Security, pp. 196–205. ACM Press, New York (2001)CrossRefGoogle Scholar
  19. 19.
    Rogaway, P., Wagner, D.: A Critique of CCM, Eprint cryptology archive 2003/070 (February 2003), http://eprint.iacr.org
  20. 20.
    Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive, Report 2004/332 (2004)Google Scholar
  21. 21.
    Special Publication, N.: 800-38C. Recommendation for Block Cipher Modes of Operation: The CCM Mode for Athentication and Confidentiality (May 2004), http://csrc.nist.gov/CryptoTollkit/modes/
  22. 22.
    Whiting, D., Housley, R., Ferguson, N.: IEEE 802.11-02/001r2: AES Encryption and Authentication Using CTR Mode and CBC-MAC (March 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pierre-Alain Fouque
    • 1
  • Gwenaëlle Martinet
    • 2
  • Frédéric Valette
    • 3
  • Sébastien Zimmer
    • 1
  1. 1.École normale supérieureParisFrance
  2. 2.DCSSI Crypto LabParis 07 SPFrance
  3. 3.CELARFrance

Personalised recommendations