Generic Security-Amplifying Methods of Ordinary Digital Signatures

  • Jin Li
  • Kwangjo Kim
  • Fangguo Zhang
  • Duncan S. Wong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5037)

Abstract

We describe two new paradigms on how to obtain ordinary signatures that are secure against existential forgery under adaptively chosen message attacks (fully-secure, in short), from any signatures satisfy only a weak security notion called existentially unforgeable against weak chosen message attacks (weakly-secure, in short). The new transformations from a weakly-secure signature scheme to fully-secure signature scheme are generic, simple, and provably secure in the standard model. Moreover, these two new paradigms are built only on weakly-secure signatures. They are different from the previous methods, which also relied on some other cryptographic protocols or non-standard models.

By using two new paradigms, several efficient instantiations without random oracles are also presented, which are based on two previous weakly-secure signature schemes. These fully-secure signature schemes have many special interesting properties compared with the previous related signature schemes.

Keywords

Signature Weak Chosen Message Attack q-SDH Assumption Strong-RSA Assumption Strong Unforgeability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Micali, S.: How to Sign Given Any Trapdoor Function. J. of the ACM 39, 214–233 (1992)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In: ACM CCS 1993, pp. 62–73. ACM Press, New York (1993)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Rogaway, P.: The Exact Security of Digital Signatures-How to Sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Bellare, M., Shoup, S.: Two-Tier Signatures, Strongly Unforgeable Signatures, and Fiat-Shamir without Random Oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 201–216. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Boneh, D., Lynn, B., Shacham, H.: Short Signatures from The Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Shen, E., Waters, B.: Strongly Unforgeable Signatures Based on Computational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology, Revisited. In: STOC 1998, pp. 207–221. ACM, New York (1998)Google Scholar
  10. 10.
    Chevallier-Mames, B., Joye, M.: A Practical and Tightly Secure Signature Scheme without Hash Function. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 339–356. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Coron, J.-S., Naccache, D.: Security Analysis of The Gennaro-Halevi-Rabin Signature Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 91–101. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Cramer, R., Damgård, I.: Secure Signature Schemes Based on Interactive Protocols. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 297–310. Springer, Heidelberg (1995)Google Scholar
  13. 13.
    Cramer, R., Shoup, V.: Signature Schemes Based on the Strong RSA Assumption. ACM TISSEC 3(3), 161–185 (2000); Extended abstract. In: Sixth ACM Conference on Computer and Communication Security (1999) CrossRefGoogle Scholar
  14. 14.
    Even, S., Goldreich, O., Micali, S.: On-Line/Off-Line Digital Signatures. Journal of Cryptology 9, 35–67 (1996)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  16. 16.
    Gennaro, R., Halevi, S., Rabin, T.: Secure Hash-and-Sign Signatures without The Random Oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Goh, E.-J., Jarecki, S.: A Signature Scheme as Secure as The Diffie-Hellman Problem. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 401–415. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM J. Computing 17(2), 281–308 (1988)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Goldwasser, S., Ostrovsky, R.: Invariant Signatures and Non-Interactive Zero-Knowledge Proofs Are Equivalent. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 228–239. Springer, Heidelberg (1993)Google Scholar
  20. 20.
    Huang, Q., Wong, D.S., Zhao, Y.: Generic Transformation to Strongly Unforgeable Signatures. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 1–17. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Lamport, L.: Constructing Digital Signatures from a One Way Function. Technical Report CSL-98, SRI International (1979)Google Scholar
  22. 22.
    Li, J., Chan, Y.Y., Wang, Y.: A Generic Construction of Secure Signatures Without Random Oracles. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3982, pp. 309–317. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Lindell, Y.: A Simpler Construction of CCA2-Secure Pulic Key Encryption under General Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 241–254. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Krawczyk, H., Rabin, T.: Chameleon Hashing and Signatures. In: Proc. of NDSS 2000, Internet Society (1998), http://eprint.iacr.org/1998/010
  25. 25.
    Naccache, D., Pointcheval, D., Stern, J.: Twin Signatures: An Alternative to The Hash-and-Sign Paradigm. In: ACM Conference on Computer and Communications Security 2001, pp. 20–27. ACM, New York (2001)CrossRefGoogle Scholar
  26. 26.
    Naor, M., Yung, M.: Universal One-Way Hash Functions and Their Cryptographic Applications. In: ACM symposium on Theory of Computing, pp. 33–43. ACM Press, New York (1989)Google Scholar
  27. 27.
    Perrig, A.: The BiBa One-Time Signature and Broadcast Authentication Protocol. In: Eighth ACM Conference on Computer and Communication Security, pp. 28–37. ACM, New York (2001)Google Scholar
  28. 28.
    Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. Journal of Cryptology 13(3), 361–396 (2000)MATHCrossRefGoogle Scholar
  29. 29.
    Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signature and Pulbic Key Cryptosystems. Comm. of ACM, 120–126 (1978)Google Scholar
  30. 30.
    Schnorr, C.P.: Efficient Signature Generation by Smart Cards. Journal of Cryptology 4, 161–174 (1991)MATHCrossRefGoogle Scholar
  31. 31.
    Shamir, A., Tauman, Y.: Improved Online/Offline Signature Schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  32. 32.
    Steinfeld, R., Pieprzyk, J., Wang, H.: How to Strengthen Any Weakly Unforgeable Signature into a Strongly Unforgeable Signature. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 357–371. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. 33.
    Waters, B.: Efficient Identity-Based Encryption without Random Oracles. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)Google Scholar
  34. 34.
    Zhang, F., Safavi-Naini, R., Susilo, W.: An Efficient Signature Scheme from Bilinear Pairings and Its Applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jin Li
    • 1
  • Kwangjo Kim
    • 1
  • Fangguo Zhang
    • 2
  • Duncan S. Wong
    • 3
  1. 1.International Research center for Information Security (IRIS)Information and Communications University(ICU)Yuseong-GuKorea
  2. 2.School of Information Science and Technology SunYat-Sen UniversityGuangzhouP.R.China
  3. 3.Department of Computer ScienceCity University of Hong KongHong KongChina

Personalised recommendations