Abstract

Conditional e-cash or conditional e-payments have been introduced by Shi et al. as the means for enabling electronic payments to be based on the outcome of a certain condition not known in advance. In this framework, a payer obtains an electronic coin and can transfer it to a payee under a certain condition. Once the outcome of the condition is known, if it was favorable to the payee, the payee can deposit the coin; otherwise, the payer keeps the money. In this work, we formalize conditional payments and give a scheme to achieve conditional e-payments that outperforms the original solution in several respects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anand, R., Madhavan, C.: An online, transferable e-cash payment system. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 93–103. Springer, Heidelberg (2000)Google Scholar
  2. 2.
    Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Non-interactive anonymous credentials. In: Theory of Cryptography Conference (TCC 2008). LNCS, vol. 4948. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Bresson, E., Stern, J.: Proofs of knowledge for non-monotone discrete-log formulae and applications. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433, pp. 272–288. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Camenisch, J., Damgard, I.: Verifiable encryption, group encryption, and their applications to group signatures and signature sharing schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Balancing accountability and privacy using e-cash. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Camenisch, J., Lysyanskaya, A.: Singature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Camenisch, J., Lysyanskaya, A., Meyerovich, M.: Endorsed e-cash. In: IEEE Symposium on Security and Privacy, pp. 101–115 (2007)Google Scholar
  11. 11.
    Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the product of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 107–122. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Camenisch, J., Stadler, M.: Proof systems for general statements about discrete logarithms. Technical Report No. 260, ETH Zurich (1997)Google Scholar
  14. 14.
    Chaum, D., Evertse, J.-H., van de Graaf, J.: An improved protocol for demonstrating possession of discrete logarithms and some generalizations. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 127–141. Springer, Heidelberg (1988)Google Scholar
  15. 15.
    Chaum, D., Pedersen, T.: Transferred cash grows in size. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 390–407. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  16. 16.
    Dingledine, R., Mathewson, N., Syverson, P.: TOR: The second generation onion router. In: USENIX Security Symposium (2004)Google Scholar
  17. 17.
    Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identifcation and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  19. 19.
    Groth, J., Sahai, A.: Efficient non-iteractive proof systems for bilinear groups. In: Advances in Cryptology - EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Jeong, I., Lee, D., Lim, J.: Efficient transferable cash with group signatures. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 462–474. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Okamoto, T., Ohta, K.: One-time zero-knowledge authentications and their applications to untraceable electronic cash. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E81-A(1), 2–10 (1998)Google Scholar
  22. 22.
    Pedersen, T.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  23. 23.
    Saxena, A., Soh, B., Zantidis, D.: A digital cash protocol based on additive zero knowledge. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 672–680. Springer, Heidelberg (2005)Google Scholar
  24. 24.
    Shi, L., Carbunar, B., Sion, R.: Conditional e-cash. In: Financial Cryptography and Data Security (FC 2007). LNCS, vol. 4886, pp. 15–28. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Marina Blanton
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of Notre Dame 

Personalised recommendations