Getting the Best Out of Existing Hash Functions; or What if We Are Stuck with SHA?

  • Yevgeniy Dodis
  • Prashant Puniya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5037)

Abstract

Cascade chaining is a very efficient and popular mode of operation for building various kinds of cryptographic hash functions. In particular, it is the basis of the most heavily utilized SHA function family. Recently, many researchers pointed out various practical and theoretical deficiencies of this mode, which resulted in a renewed interest in building specialized modes of operations and new hash functions with better security. Unfortunately, it appears unlikely that a new hash function (say, based on a new mode of operation) would be widely adopted before being standardized, which is not expected to happen in the foreseeable future.

Instead, it seems likely that practitioners would continue to use the cascade chaining, and the SHA family in particular, and try to work around the deficiencies mentioned above. In this paper we provide a thorough treatment of how to soundly design a secure hash function H′ from a given cascade-based hash function H for various cryptographic applications, such as collision-resistance, one-wayness, pseudorandomness, etc. We require each proposed construction of H′ to satisfy the following “axioms”.

  1. 1

    The construction consists of one or two “black-box” calls to H.

     
  2. 1

    In particular, one is not allowed to know/use anything about the internals of H, such as modifying the initialization vector or affecting the value of the chaining variable.

     
  3. 1

    The construction should support variable-length inputs.

     
  4. 1

    Compared to a single evaluation of H(M), the evaluation of H′(M) should make at most a fixed (small constant) number of extra calls to the underlying compression function of H. In other words, the efficiency of H′ is negligibly close to that of H.

     

We discuss several popular modes of operation satisfying the above axioms. For each such mode and for each given desired security requirement, we discuss the weakest requirement on the compression function of H which would make this mode secure. We also give the implications of these results for using existing hash functions SHA-x, where x ∈ {1,224,256,384,512}.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    An, J.H., Bellare, M.: Constructing VIL-MACs from FIL-MACs: Message Authentication under Weakened Assumptions. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 252–269. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Bellare, M.: New Proofs for NMAC and HMAC: Security without Collision-Resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom Functions Re-visited: The Cascade Construction and Its Concrete Security. In: Proc. 37th FOCS, pp. 514–523. IEEE, Los Alamitos (1996)Google Scholar
  4. 4.
    Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Bellare, M., Rogaway, P.: Collision-Resistant Hashing: Towards Making UOWHFs Practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Bellare, M., Rogaway, P.: Random oracles are practical : a paradigm for designing efficient protocols. In: Proceedings of the First Annual Conference on Computer and Communications Security, ACM, New York (1993)Google Scholar
  7. 7.
    Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Bellare, M., Ristenpart, T.: Hash Functions in the Dedicated-Key Setting: Design Choices and MPP Transforms. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård Revisited: How to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Damgård, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)Google Scholar
  11. 11.
    Dodis, Y., Gennaro, R., Håstad, J., Krawczyk, H., Rabin, T.: Randomness Extraction and Key Derivation Using the CBC, Cascade and HMAC Modes. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Dodis, Y., Puniya, P.: Getting the Best Out of Existing Hash Functions or What if We Are Stuck with SHA (ful version), http://people.csail.mit.edu/dodis/ps/sha.ps
  13. 13.
    FIPS 180-1, Secure hash standard, Federal Information Processing Standards Publication 180-1, U.S. Department of Commerce/N.I.S.T., National Technical Information Service, Springfield, Virginia, April 17 (1995) (supersedes FIPS PUB 180)Google Scholar
  14. 14.
    Halevi, S., Krawczyk, H.: Strengthening Digital Signatures Via Randomized Hashing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Kelsey, J. In: CRYPTO 2005, Rump Session (2005)Google Scholar
  17. 17.
    Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    RFC 1321, The MD5 message-digest algorithm, Internet Request for Comments 1321, R.L. Rivest (April 1992)Google Scholar
  19. 19.
    Merkle, R.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)Google Scholar
  20. 20.
    Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results on Reductions, and Applications to the Random Oracle Methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Maurer, U.M., Sjödin, J.: Single-Key AIL-MACs from Any FIL-MAC. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 472–484. Springer, Heidelberg (2005)Google Scholar
  22. 22.
    National Institute of Standards and Technology, NIST’s Plan for New Cryptographic Hash Functions, http://www.csrc.nist.gov/pki/HashWorkshop/index.html
  23. 23.
    Naor, M., Yung, M.: Universal One-Way Hash Functions and their Cryptographic Applications. In: STOC 1989, pp. 33–43 (1989)Google Scholar
  24. 24.
    Simon, D.R.: Finding Collisions on a One-Way Street: Can Secure Hash Functions Be Based on General Assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  25. 25.
    Shoup, V.: A Composition Theorem for Universal One-Way Hash Functions. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 445–452. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  26. 26.
    Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005)Google Scholar
  27. 27.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Yevgeniy Dodis
    • 1
  • Prashant Puniya
    • 1
  1. 1.Department of Computer Science, Courant Institute of Mathematical SciencesNew York University 

Personalised recommendations