Metabolic Bone Disease

  • Thomas M. LinkEmail author
Part of the Medical Radiology book series (MEDRAD)


This chapter provides an overview of techniques to measure bone mass and structure as well as techniques to measure vertebral deformity. The current standard technique to measure bone mass is dual X-ray absorptiometry (DXA), which allows to classify bone mineral density as normal, osteopenic, and osteoporotic using so-called T-scores. It also allows to sensitively monitor therapy. An alternative technique is quantitative CT (QCT) which is substantially less frequently used but provides volumetric and not areal BMD and may be more sensitive to change by only measuring trabecular bone. Peripheral QCT, quantitative ultrasound, and radiographic measurements are available to assess bone mass and structure but not as established as DXA. Measurements of bone structure are mostly used in research. To document osteoporotic vertebral fractures the Genant semiquantitative technique has been established and allows to classify severity of fractures; radiologists play a critical role in diagnosing these frequently asymptomatic fractures and thus initiating therapy.


  1. Arnold B (1989) Solid phantom for QCT bone mineral analysis. Proceedings of the seventh international workshop on bone densitometry, Palm Springs, California, 17–21 Sep 1989Google Scholar
  2. Augat P, Fan B, Lane N, Lang T, LeHir P, Lu Y et al (1998a) Assessment of bone mineral at appendicular sites in females with fractures of the proximal femur. Bone 22:395–402PubMedCrossRefPubMedCentralGoogle Scholar
  3. Augat P, Fuerst T, Genant H (1998b) Quantitative bone mineral assessment at the forearm: a review. Osteoporos Int 8:299–310PubMedCrossRefPubMedCentralGoogle Scholar
  4. Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Lewiecki EM et al (2008) Official positions of the International Society for clinical densitometry and executive summary of the 2007 ISCD Position Development Conference. J Clin Densitom 11(1):75–91PubMedCrossRefPubMedCentralGoogle Scholar
  5. Barnett E, Nordin B (1960) The radiological diagnosis of osteoporosis: a new approach. Clin Radiol 11:166–174PubMedCrossRefPubMedCentralGoogle Scholar
  6. Beck TJ, Ruff CB, Warden KE, Scott WW Jr, Rao GU (1990) Predicting femoral neck strength from bone mineral data. A structural approach. Investig Radiol 25(1):6–18CrossRefGoogle Scholar
  7. Beck TJ, Ruff CB, Mourtada FA, Shaffer RA, Maxwell-Williams K, Kao GL et al (1996) Dual-energy X-ray absorptiometry derived structural geometry for stress fracture prediction in male U.S. Marine Corps recruits. J Bone Miner Res 11(5):645–653PubMedCrossRefPubMedCentralGoogle Scholar
  8. Block J, Smith R, Glüer CC, Steiger P, Ettinger B, Genant HK (1989) Models of spinal trabecular bone loss as determined by quantitative computed tomography. J Bone Miner Res 4:249–257PubMedCrossRefPubMedCentralGoogle Scholar
  9. Boehm HF, Eckstein F, Wunderer C, Kuhn V, Lochmueller EM, Schreiber K et al (2005) Improved performance of hip DXA using a novel region of interest in the upper part of the femoral neck: in vitro study using bone strength as a standard of reference. J Clin Densitom 8(4):488–494PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bonnick S, Nichols D, Sanborn C, Payne S, Moen S, Heiss C (1996) Right and left proximal femur analyses: is there a need to do both? Calcif Tissue Int 58:307–310PubMedCrossRefPubMedCentralGoogle Scholar
  11. Boonen S, Nicholson P (1998) Assessment of femoral bone fragility and fracture risk by ultrasonic measurements at the calcaneus. Age Ageing 27(2):231–237PubMedCrossRefPubMedCentralGoogle Scholar
  12. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–6515PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bouxsein M, Palermo L, Yeung C, Black D (2002) Digital X-ray radiogrammetry predicts hip, wrist and vertebral fracture risk in elderly women: a prospective analysis from the study of osteoporotic fractures. Osteoporos Int 13:358–365PubMedCrossRefPubMedCentralGoogle Scholar
  14. Buckland-Wright JC, Lynch J, Rymer J, Fogelman I (1994) Fractal signature analysis of macroradiographs measures trabecular organization in lumbar vertebrae of postmenopausal women. Calcif Tissue Int 54:106–112PubMedCrossRefPubMedCentralGoogle Scholar
  15. Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK (2010a) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47(3):519–528PubMedPubMedCentralCrossRefGoogle Scholar
  16. Burghardt AJ, Issever AS, Schwartz AV, Davis KA, Masharani U, Majumdar S et al (2010b) High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 95(11):5045–5055PubMedPubMedCentralCrossRefGoogle Scholar
  17. Butz S, Wüster C, Scheidt-Nave C, Götz M, Ziegler R (1994) Forearm BMD as measured by peripheral quantitative computed tomography (pQCT) in a German reference population. Osteoporos Int 4:179–184PubMedCrossRefPubMedCentralGoogle Scholar
  18. Caligiuri P, Giger M, Favus M, Jia H, Doi K, Dixon L (1993) Computerized radiographic analysis of osteoporosis: preliminary evaluation. Radiology 186(2):471–474PubMedCrossRefPubMedCentralGoogle Scholar
  19. Caligiuri P, Giger ML, Favus M (1994) Multifractal radiographic analysis of osteoporosis. Med Phys 21(4):503–508PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cann C, Genant H (1980) Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr 4:493–500PubMedCrossRefPubMedCentralGoogle Scholar
  21. Crabtree N, Lunt M, Holt G, Kroger H, Burger H, Grazio S et al (2000) Hip geometry, bone mineral distribution, and bone strength in European men and women: the EPOS study. Bone 27:151–159PubMedCrossRefPubMedCentralGoogle Scholar
  22. Devlin H, Horner K (2002) Mandibular radiomorphometric indices in the diagnosis of reduced skeletal bone mineral density. Osteoporos Int 13(5):373–378PubMedCrossRefPubMedCentralGoogle Scholar
  23. Dey A, McCloskey EV, Taube T, Cox R, Pande KC, Ashford RU et al (2000) Metacarpal morphometry using a semi-automated technique in the assessment of osteoporosis and vertebral fracture risk. Osteoporos Int 11(11):953–958PubMedCrossRefPubMedCentralGoogle Scholar
  24. Diederichs G, Engelken F, Marshall LM, Peters K, Black DM, Issever AS et al (2011) Diffuse idiopathic skeletal hyperostosis (DISH): relation to vertebral fractures and bone density. Osteoporos Int 22(6):1789–1797PubMedCrossRefPubMedCentralGoogle Scholar
  25. Doyle F, Gutteridge D, Joplin G, Fraser R (1967) An assessment of radiologic criteria used in the study of spinal osteoporosis. Br J Radiol 40:241–250PubMedCrossRefPubMedCentralGoogle Scholar
  26. Duboeuf F, Hans D, Schott A, Kotzki P, Favier F, Marcelli C et al (1997) Different morphometric and densitometric parameters predict cervical and trochanteric hip fracture: the EPIDOS Study. J Bone Miner Res 12:1895–1902PubMedCrossRefPubMedCentralGoogle Scholar
  27. Engelke K, Glüer CC, Genant HK (1995) Factors influencing short-term precision of dual x-ray bone absorptiometry (DXA) of spine and femur. Calcif Tissue Int 56:19–25PubMedCrossRefPubMedCentralGoogle Scholar
  28. Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML et al (2008) Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. J Clin Densitom 11(1):123–162PubMedCrossRefPubMedCentralGoogle Scholar
  29. Ensrud K, Thompson D, Cauley J, Nevitt M, Kado D, Hochberg M et al (2000) Prevalent vertebral deformities predict mortality and hospitalization in older women with low bone mass. Fracture Intervention Trial Research Group. J Am Geriatr Soc 48(3):241–249PubMedCrossRefPubMedCentralGoogle Scholar
  30. Faulkner KG, McClung M, Cummings SR (1994) Automated evaluation of hip axis length for predicting hip fracture. J Bone Miner Res 9(7):1065–1070PubMedCrossRefGoogle Scholar
  31. Faulkner K, Genant H, McClung M (1995) Bilateral comparison of femoral bone density and hip axis length from single and fan beam DXA scans. Calcif Tissue Int 56:26–31PubMedCrossRefPubMedCentralGoogle Scholar
  32. Faulkner KG, Wacker WK, Barden HS, Simonelli C, Burke PK, Ragi S et al (2006) Femur strength index predicts hip fracture independent of bone density and hip axis length. Osteoporos Int 17(4):593–599PubMedCrossRefGoogle Scholar
  33. Felsenberg D, Gowin W (1999) Knochendichtemessung mit Zwei-Spektren-Methoden. Radiologe 39:186–193PubMedCrossRefPubMedCentralGoogle Scholar
  34. Fordham J, Chinn D, Kumar N (2000) Identification of women with reduced bone density at the lumbar spine and femoral neck using BMD at the os calcis. Osteoporos Int 11:797–802PubMedCrossRefGoogle Scholar
  35. Gehlbach S, Bigelow C, Heimisdottir M, May S, Walker M, Kirkwood J (2000) Recognition of vertebral fracture in a clinical setting. Osteoporos Int 11:577–582PubMedCrossRefPubMedCentralGoogle Scholar
  36. Genant HK, Boyd DP (1977) Quantitative bone mineral analysis using dual energy computed tomography. Investig Radiol 12:545–551CrossRefGoogle Scholar
  37. Genant HK, Cann CE, Pozzi-Mucelli RS, Kanter AS (1983) Vertebral mineral determination by quantitative computed tomography: clinical feasibility and normative data. J Comput Assist Tomogr 7:554CrossRefGoogle Scholar
  38. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148PubMedCrossRefGoogle Scholar
  39. Glüer C, Genant H (1989) Impact of marrow fat in accuracy of quantitative CT. J Comput Assist Tomogr 13:1023–1035CrossRefGoogle Scholar
  40. Glüer CC, Steiger P, Selvidge R, Elliesen-Kliefoth K, Hayashi C, Genant HK (1990) Comparative assessment of dual-photon-absorptiometry and dual-energy-radiography. Radiology 174:223–228PubMedCrossRefPubMedCentralGoogle Scholar
  41. Glüer CC, Cummings SR, Pressman A, Li J, Glüer K, Faulkner KG et al (1994) Prediction of hip fractures from pelvic radiographs: the study of osteoporotic fractures. J Bone Miner Res 9(5):671–677PubMedCrossRefPubMedCentralGoogle Scholar
  42. Gluer CC, Eastell R, Reid DM, Felsenberg D, Roux C, Barkmann R et al (2004) Association of five quantitative ultrasound devices and bone densitometry with osteoporotic vertebral fractures in a population-based sample: the OPUS Study. J Bone Miner Res 19(5):782–793PubMedCrossRefPubMedCentralGoogle Scholar
  43. Grampp S, Genant H, Mathur A, Lang P, Jergas M, Takada M et al (1997) Comparisons of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination, and diagnostic classification. J Bone Miner Res 12:697–711PubMedCrossRefPubMedCentralGoogle Scholar
  44. Guglielmi G, Njeh CF, de Terlizzi F, De Serio DA, Scillitani A, Cammisa M et al (2003) Palangeal quantitative ultrasound, phalangeal morphometric variables, and vertebral fracture discrimination. Calcif Tissue Int 72(4):469–477PubMedCrossRefPubMedCentralGoogle Scholar
  45. Guglielmi G, Adams J, Link TM (2009) Quantitative ultrasound in the assessment of skeletal status. Eur Radiol 19(8):1837–1848PubMedCrossRefPubMedCentralGoogle Scholar
  46. Haara M, Heliovaara M, Impivaara O, Arokoski JP, Manninen P, Knekt P et al (2006) Low metacarpal index predicts hip fracture: a prospective population study of 3,561 subjects with 15 years of follow-up. Acta Orthop 77(1):9–14PubMedCrossRefPubMedCentralGoogle Scholar
  47. Halling A, Persson GR, Berglund J, Johansson O, Renvert S (2005) Comparison between the Klemetti index and heel DXA BMD measurements in the diagnosis of reduced skeletal bone mineral density in the elderly. Osteoporos Int 16(8):999–1003PubMedCrossRefPubMedCentralGoogle Scholar
  48. Hans D, Njeh CF, Genant HK, Meunier PJ (1998) Quantitative ultrasound in bone status assessment. Rev Rhum Engl Ed 65(7-9):489–498PubMedPubMedCentralGoogle Scholar
  49. Hans D, Srivastav SK, Singal C, Barkmann R, Njeh CF, Kantorovich E et al (1999) Does combining the results from multiple bone sites measured by a new quantitative ultrasound device improve discrimination of hip fracture? J Bone Miner Res 14(4):644–651PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hermanutz KD, Beck KJ, Franken T (1977) Radiological observations on bone changes in women after bilateral ovariectomy with and without oestrogen prophylaxis (author’s transl). Rofo 126(6):546–550PubMedCrossRefPubMedCentralGoogle Scholar
  51. Heuck F, Schmidt E (1960) Die quantitative Bestimmung des Mineralgehalts des Knochens aus dem Röntgenbild. Fortschr Röntgenstr 93:523–554CrossRefGoogle Scholar
  52. Ito M, Ikeda K, Nishiguchi M, Shindo H, Uetani M, Hosoi T et al (2005) Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res 20(10):1828–1836PubMedCrossRefPubMedCentralGoogle Scholar
  53. Jara H, Wehrli F, Chung H, Ford J (1993) High-resolution variable fliple angle 3D MR imaging of trabecular microstructure in vivo. Magn Reson Med 29:528–539PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kalender WA, Süss C (1987) A new calibration phantom for quantitative computed tomography. Med Phys 9:816–819Google Scholar
  55. Kalender WA, Klotz E, Süss C (1987) Vertebral bone mineral analysis: an integrated approach. Radiology 164:419–423PubMedCrossRefPubMedCentralGoogle Scholar
  56. Kalender W, Brestowsky H, Felsenberg D (1988) Bone mineral measurements: automated determination of the mitvertebral CT section. Radiology 168:219–221PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kalender W, Felsenberg D, Louis O, Lopez P, Klotz E, Osteaux M et al (1989) Reference values for trabecular and cortical vertebral bone density in single and dual-energy quantitative computed tomography. Euro J Radiol 9:75–80Google Scholar
  58. Kalender W, Schmidt B, Zankl M, Schmidt M (1999) A PC program for estimating organ dose and effective dose values in computed tomography. Eur Radiol 9:555–562PubMedCrossRefPubMedCentralGoogle Scholar
  59. Knapp KM, Blake GM, Spector TD, Fogelman I (2001) Multisite quantitative ultrasound: precision, age- and menopause-related changes, fracture discrimination, and T-score equivalence with dual-energy X-ray absorptiometry. Osteoporos Int 12(6):456–464PubMedCrossRefPubMedCentralGoogle Scholar
  60. Krieg MA, Barkmann R, Gonnelli S, Stewart A, Bauer DC, Del Rio BL et al (2008) Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom 11(1):163–187PubMedCrossRefPubMedCentralGoogle Scholar
  61. Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S (2005) Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int 16(11):1307–1314PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kuehn B, Stampa B, Heller M, Glueer C (1997) In vivo assessment of trabecular bone structure of the human phalanges using high resolution magnetic resonance imaging. Osteoporos Int 7:291Google Scholar
  63. Lachmann E, Whelan M (1936) The roentgen diagnosis of osteoporosis and its limitations. Radiology 26:165–177CrossRefGoogle Scholar
  64. Lang T, Keyak J, Heitz M, Augat P, Lu Y, Mathur A et al (1997) Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone 21:101–108PubMedCrossRefPubMedCentralGoogle Scholar
  65. Lang T, Li J, Harris S, Genant H (1999) Assessment of vertebral bone mineral density using volumetric quantitative CT. J Comput Assist Tomogr 23:130–137PubMedCrossRefPubMedCentralGoogle Scholar
  66. Larnach TA, Boyd SJ, Smart RC, Butler SP, Rohl PG, Diamond TH (1992) Reproducibility of lateral spine scans using dual energy x-ray absorptiometry. Calcif Tissue Int 51:255–258PubMedCrossRefPubMedCentralGoogle Scholar
  67. Leidig-Bruckner G, Genant HK, Minne HW, Storm T, Thamsborg G, Bruckner T et al (1994) Comparison of a semiquantitative and a quantitative method for assessing vertebral fractures in osteoporosis. Bone 15(4):437–442CrossRefGoogle Scholar
  68. Lespessailes E, Benhamou C, Touliere D (1993) Fractal evaluation of trabecular bone microarchitecture of calcaneus: study of reproducibility. J Bone Miner Res 8:264Google Scholar
  69. Lespessailles E, Jullien A, Eynard E, Harba R, Jacquet G, Ildefonse J et al (1998a) Biomechanical properties of human os calcanei: relationships with bone density and fractal evaluation of bone microarchitecture. J Biomech 31:817–824PubMedCrossRefPubMedCentralGoogle Scholar
  70. Lespessailles E, Roux J, Benhamou C, Arlot M, Eynard E, Harba R et al (1998b) Fractal analysis of bone texture on os calcis radiographs compared with trabecular microarchitecture analyzed by histomorphometry. Calcif Tissue Int 63:121–125PubMedCrossRefPubMedCentralGoogle Scholar
  71. Lin JC, Amling M, Newitt DC, Selby K, Srivastav SK, Delling G et al (1998) Heterogeneity of trabecular bone structure in the calcaneus using magnetic resonance imaging. Osteoporos Int 8(1):16–24PubMedCrossRefPubMedCentralGoogle Scholar
  72. Lindsay R, Silverman S, Cooper C, Hanley D, Barton I, Broy S et al (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323PubMedCrossRefPubMedCentralGoogle Scholar
  73. Link TM, Adams JE (2009) The radiologist's important roles and responsibilities in osteoporosis. Eur J Radiol 71(3):385–387PubMedCrossRefPubMedCentralGoogle Scholar
  74. Link T, Majumdar S, Lin J, Newitt D, Konermann W, Meier N et al (1996) Texture analysis of magnification radiographs in correlation with compressive strength of human vertebrae and bone mineral density. J Bone Miner Res 11(S1):S475Google Scholar
  75. Link TM, Majumdar S, Augat P, Lin JC, Newitt D, Lu Y et al (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13(7):1175–1182PubMedCrossRefPubMedCentralGoogle Scholar
  76. Link TM, Vieth V, Matheis J, Newitt D, Lu Y, Rummeny EJ et al (2002) Bone structure of the distal radius and the calcaneus vs BMD of the spine and proximal femur in the prediction of osteoporotic spine fractures. Eur Radiol 12(2):401–408PubMedCrossRefPubMedCentralGoogle Scholar
  77. Link TM, Guglielmi G, van Kuijk C, Adams JE (2005) Radiologic assessment of osteoporotic vertebral fractures: diagnostic and prognostic implications. Eur Radiol 15(8):1521–1532PubMedCrossRefPubMedCentralGoogle Scholar
  78. Majumdar S, Genant H, Gies A, Guglielmi G (1993) Regional variations in trabecular structure in the calcaneus assessed using high resolution magnetic resonance images and quantitative image analysis. J Bone Miner Res 8S:351Google Scholar
  79. Majumdar S, Newitt D, Mathur A, Osman D, Gies A, Chiu E et al (1996) Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int 6(5):376–385PubMedCrossRefPubMedCentralGoogle Scholar
  80. Mazess RB, Barden HS (1988) Measurement of bone by dual-photon absorptiometry (DPA) and dual-energy x-ray absorptiometry (DEXA). Ann Chir Gyn 77:197–203Google Scholar
  81. Mazess RB, Wahner HM (1988) Nuclear medicine and densitometry. In: Riggs BL, Melton LJI (eds) Osteoporosis: etiology, diagnosis, and management. Raven Press, New York, pp 251–295Google Scholar
  82. Mazess RB, Collick B, Trempe J, Barden H, Hanson J (1989) Performance evaluation of a dual energy x-ray bone densitometer. Calcif Tissue Int 44:228–232PubMedCrossRefPubMedCentralGoogle Scholar
  83. Melton LR, Atkinson E, Cooper C, O’Fallon W, Riggs B (1999) Vertebral fractures predict subsequent fractures. Osteoporos Int 10:214–221PubMedCrossRefPubMedCentralGoogle Scholar
  84. Meunier P, Bressot C, Vignon E, Edouard C, Alexandre C, Coupron P et al (1978) Radiological and histological evolution of post-menopausal osteoporosis treated with sodium fluoride-vitamin D-calcium. Preliminary results. Hans Huber Publishers, BernGoogle Scholar
  85. Meunier P, Delmas P, Eastell R, McClung M, Papapoulos S, Rizzoli R et al (1999) Diagnosis and management of osteoporosis in postmenopausal women: clinical guidelines. International Committee for Osteoporosis Clinical Guidelines. Clin Ther 21:1025–1044PubMedCrossRefPubMedCentralGoogle Scholar
  86. Minne H, Leidig G, Wüster C, Siromachkostov L, Baldauf G, Bickel R et al (1988) A newly developed spine deformity index (SDI) to quantitate vertebral crush fractures in patients with osteoporosis. Bone Miner 3:335–349PubMedPubMedCentralGoogle Scholar
  87. Mueller D, Isbary M, Boehm H, Bauer J, Rummeny E, Link T (2004) Recognition of osteoporosis-related vertebral fractures on chest radiographs in postmenopausal women. RSNA Nov 28 to Dec 04 2004. Chicago. p 305Google Scholar
  88. Muller D, Bauer JS, Zeile M, Rummeny EJ, Link TM (2008) Significance of sagittal reformations in routine thoracic and abdominal multislice CT studies for detecting osteoporotic fractures and other spine abnormalities. Eur Radiol 18(8):1696–1702PubMedCrossRefPubMedCentralGoogle Scholar
  89. Newitt DC, van Rietbergen B, Majumdar S (2002) Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos Int 13(4):278–287PubMedCrossRefPubMedCentralGoogle Scholar
  90. Newitt DC, Hyun B, Black DM, Rosen CJ, Majumdar M (2005) Use of MRI of the distal radius to assess qualitative and quantitative aspects of cortical bone in postmenopausal women. J Bone Miner Res 20(Suppl 1):S119Google Scholar
  91. Nielsen SP (2001) The metacarpal index revisited: a brief overview. J Clin Densitom 4(3):199–207PubMedCrossRefPubMedCentralGoogle Scholar
  92. NIH Consensus Development Panel on Osteoporosis Prevention D, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795CrossRefGoogle Scholar
  93. Njeh CF, Boivin CM, Langton CM (1997) The role of ultrasound in the assessment of osteoporosis: a review. Osteoporos Int 7(1):7–22PubMedCrossRefPubMedCentralGoogle Scholar
  94. Njeh CF, Chen MB, Fan B, Grigorian M, Shepherd JA, Saeed I et al (2001) Evaluation of a gel-coupled quantitative ultrasound device for bone status assessment. J Ultrasound Med 20(11):1219–1228PubMedCrossRefPubMedCentralGoogle Scholar
  95. Nurzenski MK, Briffa NK, Price RI, Khoo BC, Devine A, Beck TJ et al (2007) Geometric indices of bone strength are associated with physical activity and dietary calcium intake in healthy older women. J Bone Miner Res 22(3):416–424PubMedCrossRefPubMedCentralGoogle Scholar
  96. Online NCS (2000) Osteoporosis prevention, diagnosis, and therapy. JAMA 17(1):1–36Google Scholar
  97. Pacifici R, Rupich R, Vered I, Fischer KC, Griffin M, Susman N et al (1988) Dual energy radiography (DER): a preliminary comparative study. Calcif Tissue Int 43:189–191PubMedCrossRefPubMedCentralGoogle Scholar
  98. Peacock M, Turner C, Liu G, Manatunga A, Timmerman L, Johnston CJ (1995) Better discrimination of hip fracture using bone density, geometry and architecture. Osteoporos Int 5:167–173PubMedCrossRefPubMedCentralGoogle Scholar
  99. Pothuaud L, Lespessailles E, Harba R, Jennane R, Royant V, Eynard E et al (1998) Fractal analysis of trabecular bone texture on radiographs: discriminant value in post menopausal osteoporosis. Osteoporos Int 8:618–625PubMedCrossRefPubMedCentralGoogle Scholar
  100. Reid I, Chin K, Evans M, Jones J (1994) Relation between increase in length of hip axis in older women between 1950s and 1990s and increase in age specific rates of hip fracture. BMJ 309:508–509PubMedPubMedCentralCrossRefGoogle Scholar
  101. Riggs B, Melton LR (1995) The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone 17:505S–511SPubMedCrossRefPubMedCentralGoogle Scholar
  102. Rosholm A, Hyldstrup L, Backsgaard L, Grunkin M, Thodberg H (2001) Estimation of bone mineral density by digital X-ray radiogrammetry: theoretical background and clinical testing. Osteoporos Int 12:961–969PubMedCrossRefPubMedCentralGoogle Scholar
  103. Rupich R, Pacifici R, Griffin M, Vered I, Susman N, Avioli LV (1990) Lateral dual energy radiography: a new method for measuring vertebral bone density: a preliminary study. J Clin Endocrinol Metab 70(6):1768–1770PubMedCrossRefPubMedCentralGoogle Scholar
  104. Rupich RC, Griffin MG, Pacifici R, Avioli LV, Susman N (1992) Lateral dual-energy radiography: artifact error from rib and pelvic bone. J Bone Miner Res 7(1):97–101PubMedCrossRefPubMedCentralGoogle Scholar
  105. Sandor T, Kalender WA, Hanlon WB, Weissman BN, Rumbaugh C (1985) Spinal bone mineral determination using automated contour detection: application to single and dual—energy CT. SPIE Med Imaging Instrum 555:188–194CrossRefGoogle Scholar
  106. Schwartz AV (2003) Diabetes mellitus: does it affect bone? Calcif Tissue Int 73(6):515–519PubMedCrossRefPubMedCentralGoogle Scholar
  107. Singh YM, Nagrath AR, Maini PS (1970) Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg 52-A(3):457–467CrossRefGoogle Scholar
  108. Staron R, Greenspan R, Miller T, Bilezikian J, Shane E, Haramati N (1999) Computerized bone densitometric analysis: operator-dependent errors. Radiology 211:467–470PubMedCrossRefPubMedCentralGoogle Scholar
  109. Steiger P, Block J, Steiger S (1990) Spinal bone mineral density measured with quantitative CT: effect of region of interest, vertebral level and techniques. Radiology 175:537–543PubMedCrossRefPubMedCentralGoogle Scholar
  110. Sweeney A, Malabanan A, Blake M, Weinberg J, Turner A, Ray P et al (2002) Bone mineral density assessment: comparison of dual-energy X-ray absorptiometry measurements at the calcaneus, spine, and hip. J Clin Densitom 5:57–62PubMedCrossRefPubMedCentralGoogle Scholar
  111. Theodorou D, Theodorou S (2002) Dual-energy X-ray absorptiometry in clinical practice: application and interpretation of scans beyond the numbers. Clin Imaging 26:43–49PubMedCrossRefPubMedCentralGoogle Scholar
  112. Veenland J, Link T, Konermann W, Meier N, Grashuis J, Gelsema E (1997) Unraveling the role of structure and density in determining vertebral bone strength. Calcif Tissue Int 61:474–479PubMedCrossRefPubMedCentralGoogle Scholar
  113. Vogel JM (1987) Application principles and technical considerations in SPA. In: Genant HK (ed) Osteoporosis update 1987. Radiology Research and Education Foundation, San Francisco, pp 219–231Google Scholar
  114. Wehrli F, Hwang S, Ma J, Song H, Ford J, Haddad J (1998) Cancellous bone volume and structure in the forearm: noninvasive assessment with MR microimaging and image processing. Radiology 206:347–357PubMedCrossRefPubMedCentralGoogle Scholar
  115. Wehrli FW, Leonard MB, Saha PK, Gomberg BR (2004) Quantitative high-resolution magnetic resonance imaging reveals structural implications of renal osteodystrophy on trabecular and cortical bone. J Magn Reson Imaging 20(1):83–89PubMedCrossRefPubMedCentralGoogle Scholar
  116. WHO (1994) Technical report: assessment of fracture risk and its application to screening for postmenopausal osteoporosis: a report of a WHO study group. World Health Organization, Geneva, SwitzerlandGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations