In this chapter we introduce process algebras, a class of formal modelling techniques developed in theoretical computer science, and discuss their use within systems biology. These formalisms have a number of attractive features which make them ideal candidates to be intermediate, formal, compositional representations of biological systems. As we will show, when modelling is carried out at a suitable level of abstraction, the constructed model can be amenable to analysis using a variety of different approaches, encompassing both individuals-based stochastic simulation and population-based ordinary differential equations. We focus particularly on Bio-PEPA, a recently defined extension of the PEPA stochastic process algebra, which has features to capture both stoichiometry and general kinetic laws. We present the definition of the language, some equivalence relations and the mappings to underlying mathematical models for analysis. We demonstrate the use of Bio-PEPA on two biological examples.


Stochastic Simulation Process Algebra Continuous Time Markov Chain Biochemical Network Communicate Sequential Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arkin, A.P., Rao, C.V.: Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm. Journal of Chemical Physics 11, 4999–5010 (2003)Google Scholar
  2. 2.
    Aziz, A., Kanwal, K., Singhal, V., Brayton, V.: Verifying continuous time Markov chains. Proc. 8th International Conference on Computer Aided Verification (CAV 1996). In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)Google Scholar
  3. 3.
    van Bakel, S., Kahn, I., Vigliotti, M., Heath, J.: Modelling intracellular fate of FGF receptors with Bio-Ambients. In: Sixth Workshop on Quantitative Aspects of Programming Languages (QAPL 2008). Electronic Notes in Theoretical Computer Science (to appear, 2008)Google Scholar
  4. 4.
    Bernardo, M., Gorrieri, R., Donatiello, L.: MPA: A Stochastic Process Algebra. Technical report UBLCS-94-10, Laboratory of Computer Science, University of Bologna (1994)Google Scholar
  5. 5.
    Bernardo, M., Gorrieri, R.: A tutorial on EMPA: a theory of concurrent processes with nondeterminism, priorities, probabilities and time. Theoretical Computer Science 202, 1–54 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
  7. 7.
    Bornstein, B.J., Doyle, J.C., Finney, A., Funahashi, A., Hucka, M., Keating, S.M., Kitano, H., Kovitz, B.L., Matthews, J., Shapiro, B.E., Schilstra, M.J.: Evolving a Lingua Franca and Associated Software Infrastructure for Computational Systems Biology: The Systems Biology Markup Language (SBML) Project. Systems Biology 1, 41–53 (2004)CrossRefGoogle Scholar
  8. 8.
    BioModels Database,
  9. 9.
    Bortolussi, L., Policriti, A.: Modeling Biological Systems in Stochastic Concurrent Constraint Programming. In: Proc. of WCB 2006 (2006)Google Scholar
  10. 10.
    Brodo, L., Degano, P., Priami, C.: A Stochastic Semantics for Bio-Ambients. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 22–34. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Bundschuh, R., Hayot, F., Jayaprakash, C.: Fluctuations and Slow Variables in Genetic Networks. Biophys. J. 84, 1606–1615 (2003)Google Scholar
  12. 12.
    Busi, N., Zandron, C.: Modeling and analysis of biological processes by membrane calculi and systems. In: Proc. of the Winter Simulation Conference (WSC 2006) (2006)Google Scholar
  13. 13.
    Calder, M., Gilmore, S., Hillston, J.: Automatically deriving ODEs from process algebra models of signalling pathways. In: Proc. of CMSB 2005, pp. 204–215 (2005)Google Scholar
  14. 14.
    Calder, M., Gilmore, S., Hillston, J.: Modelling the influence of RKIP on the ERK signalling pathway using the stochastic process algebra PEPA. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Calder, M., Duguid, A., Gilmore, S., Hillston, J.: Stronger computational modelling of signalling pathways using both continuous and discrete-space methods. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 63–77. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of Signalling Pathways using Continuous Time Markov Chains. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 44–67. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Cao, Y., Gillespie, D.T., Petzold, L.: Accelerated Stochastic Simulation of the Stiff Enzyme-Substrate Reaction. J. Chem. Phys. 123(14), 144917–144929 (2005)Google Scholar
  18. 18.
    Cardelli, L.: Brane Calculi - Interactions of Biological Membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Cardelli, L., Panina, E.M., Regev, A., Shapiro, E., Silverman, W.: BioAmbients: An Abstraction for Biological Compartments. Theoretical Computer Science 325(1), 141–167 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Chabrier-Rivier, N., Fages, F., Soliman, S.: Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. Journal of Biological Physics and Chemistry 4, 64–73 (2004)Google Scholar
  21. 21.
    Chiarugi, D., Degano, P., Marangoni, R.: A Computational Approach to the Functional Screening of Genomes. PLOS Comput. Biol. 9, 1801–1806 (2007)MathSciNetGoogle Scholar
  22. 22.
    Ciocchetta, F., Hillston, J.: Bio-PEPA: an extension of the process algebra PEPA for biochemical networks. In: Proc. of FBTC 2007. Electronic Notes in Theoretical Computer Science, vol. 194(3), pp. 103–117 (2008)Google Scholar
  23. 23.
    Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis of biological systems. Technical Report of the School of Informatics, University of Edinburgh, EDI-INF-RR-1231 (2008)Google Scholar
  24. 24.
    Ciocchetta, F., Priami, C.: Biological transactions for quantitative models. In: Proc. of MeCBIC 2006. Electronic Notes in Theoretical Computer Science, vol. 171(2), pp. 55–67 (2007)Google Scholar
  25. 25.
    Ciocchetta, F., Priami, C.: Beta-binders with Biological Transactions. Technical report TR-10-2006, The Microsoft Research-University of Trento Centre for Computational and Systems Biology (2006)Google Scholar
  26. 26.
    Costantin, G., Laudanna, C., Lecca, P., Priami, C., Quaglia, P., Rossi, B.: Language modeling and simulation of autoreactive lymphocytes recruitment in inflamed brain vessels. SIMULATION: Transactions of the Society for Modeling and Simulation International 80, 273–288 (2003)Google Scholar
  27. 27.
    Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325(1), 69–110 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Danos, V., Krivine, J.: Formal molecular biology done in CCS-R. In: Proc. of Workshop on Concurrent Models in Molecular Biology (BioConcur 2003) (2003)Google Scholar
  29. 29.
    Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Ruled-based modelling of cellular signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR. LNCS, vol. 4703, Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Danos, V., Feret, J., Fontana, W., Krivine, J.: Scalable simulation of cellular signalling networks. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, Springer, Heidelberg (2007)CrossRefGoogle Scholar
  31. 31.
    Danos, V., Krivine, J.: Reversible Communicating Systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004)Google Scholar
  32. 32.
    Eichler-Jonsson, C., Gilles, E.D., Muller, G., Schoeberl, B.: Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nature Biotechnology 20, 370–375 (2002)CrossRefGoogle Scholar
  33. 33.
    Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403(6767), 335–338 (2000)CrossRefGoogle Scholar
  34. 34.
    Gardner, T.S., Dolnik, M., Collins, J.J.: A theory for controlling cell cycle dynamics using a reversibly binding inhibitor. Proc. Nat. Acad. Sci. USA 95, 14190–14195 (1998)CrossRefGoogle Scholar
  35. 35.
    Geisweiller, N., Hillston, J., Stenico, M.: Relating continuous and discrete PEPA models of signalling pathways. Theoretical Computer Science (to appear, 2007)Google Scholar
  36. 36.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81, 2340–2361 (1977)CrossRefGoogle Scholar
  37. 37.
    Goldbeter, A.: A Minimal Cascade Model for the Mitotic Oscillator Involving Cyclin and Cdc2 kinase. Proc. Nat. Acad. Sci. 8, 9107–9111 (1991)CrossRefGoogle Scholar
  38. 38.
    Götz, N., Herzog, U., Rettelbach, M.: TIPP—a language for timed processes and performance evaluation. Technical report 4/92, IMMD7, University of Erlangen-Nürnberg, Germany (1992)Google Scholar
  39. 39.
    Haseltine, E.L., Rawlings, J.B.: Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117, 6959–6969 (2006)CrossRefGoogle Scholar
  40. 40.
    Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic Model Checking of Complex Biological Pathways. Theoretical Computer Science (2007) (Special Issue on Converging Sciences: Informatics and Biology)Google Scholar
  41. 41.
    Hermanns, H.: Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  42. 42.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)Google Scholar
  43. 43.
    Hoare, C.A.R.: Communicating sequential processes. International Series in Computer Science. Prentice Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  44. 44.
    Jou, C.C., Smolka, S.: Equivalences, Congruences and Complete Axiomatizations of Probabilistic Processes. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 367–383. Springer, Heidelberg (1990)Google Scholar
  45. 45.
    Kanehisa, M.: A database for post-genome analysis. Trends Genet 13, 375–376 (1997)CrossRefGoogle Scholar
  46. 46.
  47. 47.
    Kierzek, A.M., Puchalka, J.: Bridging the gap between stochastic and deterministic regimes in the kinetic simulations of the biochemical reaction networks. BIOPHYS J 86, 1357–1372 (2004)CrossRefGoogle Scholar
  48. 48.
    Kuttler, C., Lhoussaine, C., Niehren, J.: A Stochastic Pi Calculus for Concurrent Objects. Technical report RR-6076 INRIA (2006)Google Scholar
  49. 49.
    Kuttler, C., Niehren, J.: Gene regulation in the π-calculus: simulating cooperativity at the lambda switch. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 24–55. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  50. 50.
    Lecca, P., Priami, C.: Cell Cycle control in Eukaryotes: a BioSpi model. In: Proc. of Bioconcur 2003 (2003)Google Scholar
  51. 51.
    Milner, R.: Communication and Concurrency. International Series in Computer Science. Prentice Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  52. 52.
    Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge University Press, Cambridge (1999)Google Scholar
  53. 53.
    Moller, F., Tofts, C.: A Temporal Calculus for Communicating Systems. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 401–415. Springer, Heidelberg (1990)Google Scholar
  54. 54.
    Nicollin, X., Sifakis, J.: An Overview and Synthesis on Timed Process Algebras. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 526–548. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  55. 55.
    NuMSV model checker,
  56. 56.
    Le Novére, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J.L., Hucka, M.: BioModels Database: a Free, Centralized Database of Curated, Published, Quantitative Kinetic Models of Biochemical and Cellular Systems. Nucleic Acids Research 34, D689–D691 (2006)CrossRefGoogle Scholar
  57. 57.
    Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical report DAIMI FM-19, Computer Science Department, Aarhus University (1981)Google Scholar
  58. 58.
    Priami, C., Quaglia, P.: Beta-binders for biological interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)Google Scholar
  59. 59.
    Priami, C.: Stochastic π-calculus. The Computer Journal 38(6), 578–589 (1995)CrossRefGoogle Scholar
  60. 60.
    Priami, C., Regev, A., Silverman, W., Shapiro, E.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters 80, 25–31 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  61. 61.
  62. 62.
    Regev, A.: Representation and simulation of molecular pathways in the stochastic π-calculus. In: Proc. of the 2nd workshop on Computation of Biochemical Pathways and Genetic Networks (2001)Google Scholar
  63. 63.
    Regev, A., Shapiro, E.: Cells as computation. Nature 419, 343 (2002)CrossRefGoogle Scholar
  64. 64.
    Romanel, A., Dematté, L., Priami, C.: The Beta Workbench. Technical report TR-03-2007, The Microsoft Research-University of Trento Centre for Computational and Systems Biology (2007)Google Scholar
  65. 65.
    Segel, I.H.: Enzyme Kinetics: Behaviour and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems. Wiley-Interscience, New York (1993)Google Scholar
  66. 66.
    SPIM, The stochastic Pi-Machine,
  67. 67.
    Strulo, B.: Process Algebra for Discrete Event Simulation. PhD Thesis, Imperial College (1993)Google Scholar
  68. 68.
    Wolkenhauer, O., Ullah, M., Kolch, W., Cho, K.H.: Modelling and Simulation of IntraCellular Dynamics: Choosing an Appropriate Framework. IEEE Transactions on NanoBioScience 3, 200–207 (2004)CrossRefGoogle Scholar
  69. 69.
    Versari, C., Busi, N.: Efficient stochastic simulation of biological systems with multiple variable volumes. In: Proc. of FBTC 2007. Electronic Notes in Theoretical Computer Science, vol. 194(3) (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Federica Ciocchetta
    • 1
  • Jane Hillston
    • 1
  1. 1.Laboratory for Foundations of Computer ScienceThe University of EdinburghEdinburghScotland

Personalised recommendations