Advertisement

Petri Nets for Systems and Synthetic Biology

  • Monika Heiner
  • David Gilbert
  • Robin Donaldson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5016)

Abstract

We give a description of a Petri net-based framework for modelling and analysing biochemical pathways, which unifies the qualitative, stochastic and continuous paradigms. Each perspective adds its contribution to the understanding of the system, thus the three approaches do not compete, but complement each other. We illustrate our approach by applying it to an extended model of the three stage cascade, which forms the core of the ERK signal transduction pathway. Consequently our focus is on transient behaviour analysis. We demonstrate how qualitative descriptions are abstractions over stochastic or continuous descriptions, and show that the stochastic and continuous models approximate each other. Although our framework is based on Petri nets, it can be applied more widely to other formalisms which are used to model and analyse biochemical networks.

Keywords

Model Check Extracellular Signal Regulate Kinase Synthetic Biology Biochemical Network System Biology Markup Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AAB00]
    Singhal, V., Aziz, A., Sanwal, K., Brayton, R.: Model checking continuous time Markov chains. ACM Trans. on Computational Logic 1(1), 162–170 (2000)Google Scholar
  2. [ADLS06]
    Angeli, D., De Leenheer, P., Sontag, E.D.: On the structural monotonicity of chemical reaction networks. In: Proc. 45th IEEE Conference on Decision and Control, pp. 7–12 (2006)Google Scholar
  3. [AME04]
    Adalsteinsson, D., McMillen, D., Elston, T.C.: Biochemical network stochastic simulator (bionetS): software for stochastic modeling of biochemical networks. BMC Bioinformatics 5, 24 (2004)CrossRefGoogle Scholar
  4. [APUM03]
    Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model building and model checking for biochemical processes. Cell Biochemistry and Biophysics 38, 271–286 (2003)Google Scholar
  5. [Bio08]
    BioNessie website. A biochemical pathway simulation and analysis tool. University of Glasgow (2008), http://www.bionessie.org
  6. [BK02]
    Bause, F., Kritzinger, P.S.: Stochastic Petri Nets. Vieweg (2002)Google Scholar
  7. [CBK03]
    Hermanns, H., Baier, C., Haverkort, B., Katoen, J.-P.: Model-checking algorithms for continuous-time markov chains. IEEE Trans. on Software Engineering 29(6), 524–541 (2003)CrossRefGoogle Scholar
  8. [CCRFS06]
    Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochemical networks from temporal logic properties. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 68–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. [CF03]
    Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. [CGP01]
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge (2001) (third printing)Google Scholar
  11. [Cha07]
    Chaouiya, C.: Petri net modelling of biological networks. Briefings in Bioinformatics 8(4), 210–219 (2007)CrossRefGoogle Scholar
  12. [Cha08]
    Charlie Website. A Tool for the Analysis of Place/Transition Nets. BTU Cottbus (2008), http://www-dssz.informatik.tu-cottbus.de/software/charlie/charlie.html
  13. [CKS07]
    Chickarmane, V., Kholodenko, B.N., Sauro, H.M.: Oscillatory dynamics arising from competitive inhibition and multisite phosphorylation. Journal of Theoretical Biology 244(1), 68–76 (2007)CrossRefMathSciNetGoogle Scholar
  14. [Cur06]
    Curry, E.: Stochastic Simulation of the Entrained Circadian Rhythm. Master thesis, School of Informatics, Univ. of Edinburgh (2006)Google Scholar
  15. [CVGO06]
    Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling pathways using continuous time Markov chains. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 44–67. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. [DA05]
    David, R., Alla, H.: Discrete, Continuous, and Hybrid Petri Nets. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  17. [DDS04]
    D’Aprile, D., Donatelli, S., Sproston, J.: CSL model checking for the GreatSPN tool. In: Aykanat, C., Dayar, T., Körpeoğlu, İ. (eds.) ISCIS 2004. LNCS, vol. 3280, Springer, Heidelberg (2004)Google Scholar
  18. [DE95]
    Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, New York (1995)zbMATHGoogle Scholar
  19. [DJ01]
    Desel, J., Juhás, G.: What is a Petri Net? In: Ehrig, H., Juhás, G., Padberg, J., Rozenberg, G. (eds.) APN 2001. LNCS, vol. 2128, pp. 1–25. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. [DP80]
    Dormand, J.R., Prince, P.J.: A family of embedded runge-kutta formulae. J. Comp. Appl. Math. 6, 1–22 (1980)CrossRefMathSciNetGoogle Scholar
  21. [EKL+02]
    Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Pathway logic: Symbolic analysis of biological signaling. In: Proc. Seventh Pacific Symposium on Biocomputing, pp. 400–412 (2002)Google Scholar
  22. [FR07]
    Fages, F., Rizk, A.: On the analysis of numerical data time series in temporal logic. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 48–63. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. [GH06]
    Gilbert, D., Heiner, M.: From Petri nets to differential equations - an integrative approach for biochemical network analysis. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 181–200. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. [GHL07a]
    Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling and analysing biochemical pathways using Petri nets. In: TR I-02, CS Dep., BTU Cottbus (2007)Google Scholar
  25. [GHL07b]
    Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling and analysing biochemical pathways using Petri nets. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 200–216. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. [GHR+08]
    Gilbert, D., Heiner, M., Rosser, S., Fulton, R., Gu, X., Trybiło, M.: A Case Study in Model-driven Synthetic Biology. In: 2nd IFIP Conference on Biologically Inspired Collaborative Computing (BICC), IFIP WCC 2008, Milano (to appear, 2008)Google Scholar
  27. [Gil77]
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  28. [GP98]
    Goss, P.J.E., Peccoud, J.: Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proc. Natl. Acad. Sci., USA, 95, 2340–2361 (1998)Google Scholar
  29. [HDG08]
    Heiner, M., Donaldson, R., Gilbert, D.: Petri Nets for Systems Biology. In: Iyengar, M.S. (ed.) Symbolic Systems Biology: Theory and Methods, Jones and Bartlett Publishers, Inc (to appear, 2008)Google Scholar
  30. [HFS+03]
    Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H. et al.: The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. J. Bioinformatics 19, 524–531 (2003)CrossRefGoogle Scholar
  31. [HK04]
    Heiner, M., Koch, I.: Petri Net Based Model Validation in Systems Biology. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 216–237. Springer, Heidelberg (2004)Google Scholar
  32. [HKN+06]
    Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic model checking of complex biological pathways. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 32–47. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. [Hof94]
    Hofestädt, R.: A Petri net application of metabolic processes. Journal of System Analysis, Modeling and Simulation 16, 113–122 (1994)zbMATHGoogle Scholar
  34. [HRS08]
    Heiner, M., Richter, R., Schwarick, M.: Snoopy - A Tool to Design and Animate/Simulate Graph-Based Formalisms. In: Proc. PNTAP 2008, ACM, New York (to appear, 2008)Google Scholar
  35. [KH08]
    Koch, I., Heiner, M.: Petri Nets. In: Junker, B.H., Schreiber, F. (eds.) Biological Network Analysis, 7, pp. 139–179. Wiley Book Series on Bioinformatics (2008)Google Scholar
  36. [Kie02]
    Kierzek, A.M.: STOCKS: STOChastic kinetic simulations of biochemical systems with gillespie algorithm. Bioinformatics 18(3), 470–481 (2002)CrossRefGoogle Scholar
  37. [Lau73]
    Lautenbach, K.: Exact Liveness Conditions of a Petri Net Class (in German). Technical report, GMD Report 82, Bonn (1973)Google Scholar
  38. [LBS00]
    Levchenko, A., Bruck, J., Sternberg, P.W.: Scaffold proteins biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl. Acad. Sci. USA 97(11), 5818–5823 (2000)CrossRefGoogle Scholar
  39. [Mat06]
    Li, C., Miyano, S., Matsuno, H.: Petri net based descriptions for systematic understanding of biological pathways. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E89-A(11), 3166–3174 (2006)Google Scholar
  40. [MBC+95]
    Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets, 2nd edn. Wiley Series in Parallel Computing. John Wiley and Sons, Chichester (1995)zbMATHGoogle Scholar
  41. [MC2]
    MC2 Website. MC2 - PLTL model checker. University of Glasgow (2008), http://www.brc.dcs.gla.ac.uk/software/mc2/
  42. [MFD+03]
    Matsuno, H., Fujita, S., Doi, A., Nagasaki, M., Miyano, S.: Towards Pathway Modelling and Simulation. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 3–22. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  43. [MGF]
    Max-Gruenebaum-Foundation, http://www.max-gruenebaum-stiftung.de
  44. [Mur89]
    Murata, T.: Petri nets: Properties, analysis and applications. Proc.of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  45. [Pal06]
    Palsson, B.O.: Systems Biology: Properties of Reconstructed Networks. Cambridge University Press, Cambridge (2006)Google Scholar
  46. [Pet62]
    Petri, C.A.: Communication with Automata (in German). Schriften des Instituts für Instrumentelle Mathematik, Bonn (1962)Google Scholar
  47. [PNK06]
    Parker, D., Norman, G., Kwiatkowska, M.: PRISM 3.0.beta1 Users’ Guide (2006)Google Scholar
  48. [Pnu81]
    Pnueli, A.: The temporal semantics of concurrent programs. Theor. Comput. Sci. 13, 45–60 (1981)CrossRefMathSciNetzbMATHGoogle Scholar
  49. [PW03]
    Priese, L., Wimmel, H.: Theoretcial Informatics - Petri Nets (in German). Springer, Heidelberg (2003)Google Scholar
  50. [Rei82]
    Reisig, W.: Petri nets; An introduction. Springer, Heidelberg (1982)Google Scholar
  51. [RML93]
    Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.L.: Petri Net Representations in Metabolic Pathways. In: Proc. of the Int. Conf. on Intelligent Systems for Molecular Biology (1993)Google Scholar
  52. [SK05]
    Salis, H., Kaznessis, Y.: Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. J. Chem. Phys. 122 (2005)Google Scholar
  53. [Sno08]
    Snoopy Website. A Tool to Design and Animate/Simulate Graphs. BTU Cottbus (2008), http://www-dssz.informatik.tu-cottbus.de/software/snoopy.html
  54. [SPB01]
    Srivastava, R., Peterson, M.S., Bentley, W.E.: Stochastic kinetic analysis of the escherichia coli stress circuit using σ 32-targeted antisense. Biotechnology and Bioengineering 75(1), 120–129 (2001)CrossRefGoogle Scholar
  55. [SR97]
    Shampine, L.F., Reichelt, M.W.: The MATLAB ODE Suite. SIAM Journal on Scientific Computing 18, 1–22 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  56. [SR99]
    Starke, P.H., Roch, S.: INA - The Intergrated Net Analyzer. Humboldt University Berlin (1999), www.informatik.hu-berlin.de/~starke/ina.html
  57. [SSE03]
    Schröter, C., Schwoon, S., Esparza, J.: The Model Checking Kit. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 463–472. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  58. [SSW05]
    Shaw, O.J., Steggles, L.J., Wipat, A.: Automatic parameterisation of stochastic Petri net models of biological networks. CS-TR-909, School of CS, Univ. of Newcastle upon Tyne (2005)Google Scholar
  59. [ST05]
    Schulz-Trieglaff, O.: Modelling the randomness in biological systems. Master thesis, School of Informatics, University of Edinburgh (2005)Google Scholar
  60. [Sta89]
    Starke, P.H.: Some Properties of Timed Nets under the Earliest Firing Rule. In: Rozenberg, G. (ed.) APN 1989. LNCS, vol. 424, pp. 418–432. Springer, Heidelberg (1990)Google Scholar
  61. [Sta90]
    Starke, P.H.: Analysis of Petri Net Models (in German). B.G. Teubner, Stuttgart, Stuttgart (1990)Google Scholar
  62. [Ste94]
    Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994)zbMATHGoogle Scholar
  63. [Tov06]
    Tovchigrechko, A.: Model checking using interval decision diagrams. PhD thesis, BTU Cottbus, Dep. of CS, (submitted 2006)Google Scholar
  64. [TSB04]
    Turner, T.E., Schnell, S., Burrage, K.: Stochastic approaches for modelling in vivo reactions. Comp. Biology and Chemistry 28(3), 165–178 (2004)CrossRefzbMATHGoogle Scholar
  65. [Wil06]
    Wilkinson, D.J.: Stochastic Modelling for System Biology, 1st edn. CRC Press, New York (2006)Google Scholar
  66. [WMS05]
    Sujathab, A., Marwan, W., Starostzik, C.: Reconstructing the regulatory network controlling commitment and sporulation in Physarum polycephalum based on hierarchical Petri net modeling and simulation. J. of Theoretical Biology 236(4), 349–365 (2005)CrossRefGoogle Scholar
  67. [YKNP06]
    Younes, H., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical probabilistic model checking. STTT 8(3), 216–228 (2006)CrossRefGoogle Scholar
  68. [YS02]
    Younes, H.L.S., Simmons, R.G.: Probabilistic verification of descrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Monika Heiner
    • 1
  • David Gilbert
    • 2
  • Robin Donaldson
    • 2
  1. 1.Department of Computer ScienceBrandenburg University of TechnologyCottbusGermany
  2. 2.Bioinformatics Research CentreUniversity of GlasgowGlasgowScotland, UK

Personalised recommendations