Biologists use diagrams to represent interactions between molecular species, and on the computer, diagrammatic notations are also employed in interactive maps. These diagrams are fundamentally of two types: reaction graphs and activation/inhibition graphs. In this tutorial, we study these graphs with formal methods originating from programming theory. We consider systems of biochemical reactions with kinetic expressions, as written in the Systems Biology Markup Language (SBML), and interpreted in the Biochemical Abstract Machine (Biocham) at different levels of abstraction, by either an asynchronous boolean transition system, a continuous time Markov chain, or a system of Ordinary Differential Equations over molecular concentrations. We show that under general conditions satisfied in practice, the activation/inhibition graph is independent of the precise kinetic expressions, and is computable in linear time in the number of reactions. Then we consider the formalization of the biological properties of systems, as observed in experiments, in temporal logics. We show that these logics are expressive enough to capture semi-qualitative semi-quantitative properties of the boolean and differential semantics of reaction models, and that model-checking techniques can be used to validate a model w.r.t. its temporal specification, complete it, and search for kinetic parameter values. We illustrate this modelling method with examples on the MAPK signalling cascade, and on Kohn’s map of the mammalian cell cycle.


Model Check Reaction Model Temporal Logic MAPK Cascade Kripke Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kohn, K.W.: Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Molecular Biology of the Cell 10, 2703–2734 (1999)Google Scholar
  2. 2.
    Hucka, M., et al.: The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003)CrossRefGoogle Scholar
  3. 3.
    Thomas, R., Gathoye, A.M., Lambert, L.: A complex control circuit: regulation of immunity in temperate bacteriophages. European Journal of Biochemistry 71, 211–227 (1976)CrossRefGoogle Scholar
  4. 4.
    Kaufman, M., Soulé, C., Thomas, R.: A new necessary condition on interaction graphs for multistationarity. Journal of Theoretical Biology 248, 675–685 (2007)CrossRefGoogle Scholar
  5. 5.
    Soulé, C.: Mathematical approaches to differentiation and gene regulation. C.R. Biologies 329, 13–20 (2006)CrossRefGoogle Scholar
  6. 6.
    Soulé, C.: Graphic requirements for multistationarity. ComplexUs 1, 123–133 (2003)CrossRefGoogle Scholar
  7. 7.
    Snoussi, E.: Necessary conditions for multistationarity and stable periodicity. J. Biol. Syst. 6, 3–9 (1998)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gouzé, J.L.: Positive and negative circuits in dynamical systems. J. Biol. Syst. 6, 11–15 (1998)CrossRefzbMATHGoogle Scholar
  9. 9.
    Calzone, L., Fages, F., Soliman, S.: BIOCHAM: An environment for modeling biological systems and formalizing experimental knowledge. BioInformatics 22, 1805–1807 (2006)CrossRefGoogle Scholar
  10. 10.
    Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. Journal of Biological Physics and Chemistry 4, 64–73 (2004)CrossRefGoogle Scholar
  11. 11.
    Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.: Rules for modeling signal-transduction systems. Science STKE 344, 6 (2006)Google Scholar
  12. 12.
    Soliman, S., Fages, F.: CMBSlib: a library for comparing formalisms and models of biological systems. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 231–235. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Fages, F., Soliman, S.: Abstract interpretation and types for systems biology. In: Theoretical Computer Science (to appear, 2008)Google Scholar
  14. 14.
    Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochemical networks from temporal logic properties. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 68–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Fages, F.: From syntax to semantics in systems biology - towards automated reasoning tools. Transactions on Computational Systems Biology IV 3939, 68–70 (2006)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biochemical interaction networks. Theoretical Computer Science 325, 25–44 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Levchenko, A., Bruck, J., Sternberg, P.W.: Scaffold proteins biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. PNAS 97, 5818–5823 (2000)CrossRefGoogle Scholar
  18. 18.
    Ventura, A.C., Sepulchre, J.A., Merajver, S.D.: A hidden feedback in signaling cascades is revealed. In: PLoS Computational Biology (to appear, 2008)Google Scholar
  19. 19.
    Markevich, N.I., Hoek, J.B., Kholodenko, B.N.: Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. Journal of Cell Biology 164, 353–359 (2005)CrossRefGoogle Scholar
  20. 20.
    Kolch, W., Kotwaliwale, A., Vass, K., Janosch, P.: The role of raf kinases in malignant transformation. In: Expert Reviews in Molecular Medicine, vol. 25, Cambridge University Press, Cambridge (2002)Google Scholar
  21. 21.
    Shapiro, B.E., Levchenko, A., Meyerowitz, E.M., Wold, B.J., Mjolsness, E.D.: Cellerator: extending a computer algebra system to include biochemical arrows for signal transduction simulations. Bioinformatics 19, 677–678 (2003)CrossRefGoogle Scholar
  22. 22.
    Regev, A., Silverman, W., Shapiro, E.Y.: Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Proceedings of the sixth Pacific Symposium of Biocomputing, pp. 459–470 (2001)Google Scholar
  23. 23.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81, 2340–2361 (1977)CrossRefGoogle Scholar
  24. 24.
    Gillespie, D.T.: General method for numerically simulating stochastic time evolution of coupled chemical-reactions. Journal of Computational Physics 22, 403–434 (1976)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Gibson, M.A., Bruck, J.: A probabilistic model of a prokaryotic gene and its regulation. In: Bolouri, H., Bower, J. (eds.) Computational Methods in Molecular Biology: From Genotype to Phenotype, MIT press, Cambridge (2000)Google Scholar
  26. 26.
    Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri net representations in metabolic pathways. In: Hunter, L., Searls, D.B., Shavlik, J.W. (eds.) Proceedings of the 1st International Conference on Intelligent Systems for Molecular Biology (ISMB, pp. 328–336. AAAI Press, Menlo Park (1993)Google Scholar
  27. 27.
    Sackmann, A., Heiner, M., Koch, I.: Application of petri net based analysis techniques to signal transduction pathways. BMC Bioinformatics 7 (2006)Google Scholar
  28. 28.
    Chaouiya, C.: Petri net modelling of biological networks. Briefings in Bioinformatics (2007)Google Scholar
  29. 29.
    Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling and analysing biochemical pathways using petri nets. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Schuster, S., Pfeiffer, T., Moldenhauer, F., et al.: Exploring the pathway structure of metabolism: decomposition into subnetworks and application to mycoplasma pneumoniae. Bioinformatics 18, 51–61 (2002)CrossRefGoogle Scholar
  31. 31.
    Zevedei-Oancea, I., Schuster, S.: Topological analysis of metabolic networks based on petri net theory. Silico Biology 3 (2003)Google Scholar
  32. 32.
    Chabrier, N., Fages, F.: Symbolic model cheking of biochemical networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  33. 33.
    Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sönmez, M.K.: Pathway logic: Symbolic analysis of biological signaling. In: Proceedings of the seventh Pacific Symposium on Biocomputing, pp. 400–412 (2002)Google Scholar
  34. 34.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL 1977: Proceedings of the 6th ACM Symposium on Principles of Programming Languages, Los Angeles, pp. 238–252. ACM Press, New York (1977)CrossRefGoogle Scholar
  35. 35.
    Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. Theoretical Computer Science 277, 47–103 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Cousot, P.: Types as abstract interpretation. In: POP 1997: Proceedings of the 24th ACM Symposium on Principles of Programming Languages, pp. 316–331. ACM Press, New York (1997)CrossRefGoogle Scholar
  37. 37.
    Qiao, L., Nachbar, R.B., Kevrekidis, I.G., Shvartsman, S.Y.: Bistability and oscillations in the huang-ferrell model of mapk signaling. PLoS Computational Biology 3, 1819–1826 (2007)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  39. 39.
    Bernot, G., Comet, J.P., Richard, A., Guespin, J.: A fruitful application of formal methods to biological regulatory networks: Extending thomas’ asynchronous logical approach with temporal logic. Journal of Theoretical Biology 229, 339–347 (2004)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Batt, G., Bergamini, D., de Jong, H., Garavel, H., Mateescu, R.: Model checking genetic regulatory networks using gna and cadp. In: Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, Springer, Heidelberg (2004)Google Scholar
  41. 41.
    Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling pathways using the continuous time markow chains. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 44–67. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  42. 42.
    Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic model checking of complex biological pathways. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 32–47. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  43. 43.
    Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model building and model checking for biochemical processes. Cell Biochemistry and Biophysics 38, 271–286 (2003)CrossRefGoogle Scholar
  44. 44.
    Fages, F.: Temporal logic constraints in the biochemical abstract machine biocham (invited talk). In: Hill, P.M. (ed.) LOPSTR 2005. LNCS, vol. 3901, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  45. 45.
    Cardelli, L.: Brane calculi - interactions of biological membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer, Heidelberg (2005)Google Scholar
  46. 46.
    Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients: An abstraction for biological compartments. Theoretical Computer Science 325, 141–167 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  47. 47.
    Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325, 69–110 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  48. 48.
    Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus. Transactions on Computational Systems Biology Special issue of BioConcur (to appear, 2004)Google Scholar
  49. 49.
    Fages, F., Soliman, S.: Type inference in systems biology. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  50. 50.
    Cimatti, A., Clarke, E., Enrico Giunchiglia, F.G., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: Nusmv 2: An opensource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  51. 51.
    Fages, F., Rizk, A.: On the analysis of numerical data time series in temporal logic. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 48–63. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  52. 52.
    Fages, F., Soliman, S.: Model revision from temporal logic properties in systems biology. In: Probabilistic Inductive Logic Programming. LNCS, vol. 4911, pp. 287–304. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  53. 53.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6, 512–535 (1994)CrossRefzbMATHGoogle Scholar
  54. 54.
    Kwiatkowska, M.Z., Norman, G., Parker, D.: Prism 2.0: A tool for probabilistic model checking. In: st International Conference on Quantitative Evaluation of Systems (QEST 2004), pp. 322–323. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  55. 55.
    Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004)Google Scholar
  56. 56.
    Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. Journal of Physical Chemistry 104, 1876–1889 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • François Fages
    • 1
  • Sylvain Soliman
    • 1
  1. 1.Projet ContraintesINRIA RocquencourtLe Chesnay CedexFrance

Personalised recommendations