The Calculus of Looping Sequences

  • Roberto Barbuti
  • Giulio Caravagna
  • Andrea Maggiolo–Schettini
  • Paolo Milazzo
  • Giovanni Pardini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5016)


We describe the Calculus of Looping Sequences (CLS) which is suitable for modeling microbiological systems and their evolution. We present two extensions, CLS with links (LCLS) and Stochastic CLS. LCLS simplifies the description of protein interaction at a lower level of abstraction, namely at the domain level. Stochastic CLS allows us to describe quantitative aspects of the modeled systems, such as the frequency of chemical reactions. As examples of application to real biological systems, we show the simulation of the activity of the lactose operon in E.coli and the quorum sensing process in P.aeruginosa, both described with Stochastic CLS.


Epidermal Growth Factor Parallel Composition Loop Sequence Continuous Time Markov Chain Containment Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Belta, C., Ivancic, F., Kumar, V., Mintz, M., Pappas, G., Rubin, H., Schug, J.: Hybrid modeling and simulation of biomolecular networks. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–32. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Barbuti, R., Caravagna, G., Maggiolo-Schettini, A., Milazzo, P.: An intermediate language for the simulation of biological systems. In: From Biology to Concurrency and Back (FBTC 2007). ENTCS, vol. 194, pp. 19–34. Elsevier, Amsterdam (2007)Google Scholar
  3. 3.
    Barbuti, R., Caravagna, G., Maggiolo-Schettini, A., Milazzo, P.: An intermediate language for the stochastic simulation of biological systems (Submitted for publication) 2008),
  4. 4.
    Barbuti, R., Cataudella, S., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A probabilistic model for molecular systems. Fundamenta Informaticae 67, 13–27 (2005)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P.: Extending the calculus of looping sequences to model protein interaction at the domain level. In: Măndoiu, I.I., Zelikovsky, A. (eds.) ISBRA 2007. LNCS (LNBI), vol. 4463, pp. 638–649. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tiberi, P., Troina, A.: Stochastic cls for the modeling and simulation of biological systems (Submitted for publication) (2008),
  7. 7.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A calculus of looping sequences for modelling microbiological systems. Fundamenta Informaticae 72, 21–35 (2006)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: Bisimulation congruences in the calculus of looping sequences. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 93–107. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: Bisimulations in Calculi Modelling Membranes. In: Formal Aspects of Computing (in press)Google Scholar
  10. 10.
    Brodo, L., Degano, P., Priami, C.: A stochastic semantics for bioambients. In: Malyshkin, V.E. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 22–34. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Cardelli, L.: Brane calculi. interactions of biological membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Cardelli, L., Gordon, A.: Mobile ambients. Theoretical Compututer Scence 240(1), 177–213 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schachter, V.: Modeling and querying biomolecular interaction networks. Theoretical Computer Science 325(1), 25–44 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    CLSm: simulation tool (web page),
  15. 15.
    Curti, M., Degano, P., Priami, C., Baldari, C.: Modelling biochemical pathways through enhanced pi-calculus. Theoretical Computer Science 325(1), 111–140 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Damm, W., Harel, D.: LSCs: Breathing life into message sequence charts. Formal Methods in System Design 19(1) (2001)Google Scholar
  17. 17.
    Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325(1), 69–110 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Danos, V., Pradalier, S.: Projective brane calculus. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 134–148. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Degano, P., Prandi, D., Priami, C., Quaglia, P.: Beta-binders for biological quantitative experiments. In: Quantitative Aspects of Programming Languages (QAPL 2006). ENTCS, vol. 164, pp. 101–117. Elsevier, Amsterdam (2006)Google Scholar
  20. 20.
    Delden, C.V., Iglewski, B.: Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis. 4, 551–560 (1998)CrossRefGoogle Scholar
  21. 21.
    Efroni, S., Choen, I., Harel, D.: Toward rigorous comprehension of biological complexity: Modeling, execution and visualization of thymic t–cell maturation. Genome Research 13, 2485–2497 (2003)CrossRefGoogle Scholar
  22. 22.
    Harel, D.: Statecharts: A visual formalism for complex systems. Science of Computer Programming 8(3), 231–274 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Harel, D.: A grand challenge: Full reactive modeling of a multi-cellular animal. Bulletin of the EATCS 81, 226–235 (2003)Google Scholar
  24. 24.
    Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81, 2340–2361 (1977)CrossRefGoogle Scholar
  25. 25.
    Kam, N., Cohen, I., Harel, D.: The immune system as a reactive system: Modeling t–cell activation with Statecharts. In: Symposia on Human Centric Computing Languages and Environments (HCC 2001), vol. 15, IEEE Computer Society, Los Alamitos (2001)Google Scholar
  26. 26.
    Kam, N., Harel, D., Kugler, H., Marelly, R., Pnueli, A., Hubbard, E., Stern, M.: Formal modeling of c. elegans development: A scenario-based approach. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 4–20. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  27. 27.
    Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with prism: a hybrid approach. Int. Journal on Software Tools for Technology Transfer 6(2), 128–142 (2004)Google Scholar
  28. 28.
    Laneve, C., Tarissan, F.: A simple calculus for proteins and cells. In: Membrane Computing and Biological Inspired Process Calculi (MeCBIC 2006). ENTCS, vol. 171, pp. 139–154. Elsevier, Amsterdam (2007)Google Scholar
  29. 29.
    Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid petri net representation of gene regulatory network. In: Pacific Symposium on Biocomputing, pp. 341–352. World Scientific Press, Singapore (2000)Google Scholar
  30. 30.
    Milazzo, P.: Qualitative and Quantitative Formal Modeling of Biological Systems. PhD thesis, Università di Pisa (2007)Google Scholar
  31. 31.
    Pǎun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Pǎun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)Google Scholar
  33. 33.
    Pérez-Jiménez, M., Romero-Campero, F.: A study of the robustness of the egfr signalling cascade using continuous membrane systems. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3561, pp. 268–278. Springer, Heidelberg (2005)Google Scholar
  34. 34.
    Pérez-Jiménez, M., Romero-Campero, F.: P systems, a new computational modelling tool for systems biology. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 176–197. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  35. 35.
    Priami, C.: Stochastic π–calculus. The Computer Journal 38(7), 578–589 (1995)CrossRefGoogle Scholar
  36. 36.
    Priami, C., Quaglia, P.: Beta binders for biological interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)Google Scholar
  37. 37.
    Priami, C., Regev, A., Silverman, W., Shapiro, E.: Application of a stochastic name–passing calculus to representation and simulation of molecular processes. Information Processing Letters 80, 25–31 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, Heidelberg (1990)zbMATHGoogle Scholar
  39. 39.
    P Systems: web page,
  40. 40.
    Regev, A., Panina, E., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients: An abstraction for biological compartments. Theoretical Computer Science 325(1), 141–167 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Regev, A., Shapiro, E.: Cells as computation. Nature 419, 343 (2002)CrossRefGoogle Scholar
  42. 42.
    Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Pacific Symposium on Biocomputing, pp. 459–470. World Scientific Press, Singapore (2001)Google Scholar
  43. 43.
    Stevens, A., Greenberg, E.: Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes. J. of Bacteriology 179, 557–562 (1997)Google Scholar
  44. 44.
    Wiley, H., Shvartsman, S., Lauffenburger, D.: Computational modeling of the egf–receptor system: a paradigm for systems biology. Trends in Cell Biology 13(1), 43–50 (2003)CrossRefGoogle Scholar
  45. 45.
    Wilkinson, D.: Stochastic Modelling for Systems Biology. Chapman and Hall/CRC (2006)Google Scholar
  46. 46.
    Wong, P., Gladney, S., Keasling, J.: Mathematical model of the lac operon: Inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose. Biotechnology Progress 13, 132–143 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Roberto Barbuti
    • 1
  • Giulio Caravagna
    • 1
  • Andrea Maggiolo–Schettini
    • 1
  • Paolo Milazzo
    • 1
  • Giovanni Pardini
    • 1
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly

Personalised recommendations