Advertisement

Minimum Cost Homomorphism Dichotomy for Oriented Cycles

  • Gregory Gutin
  • Arash Rafiey
  • Anders Yeo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5034)

Abstract

For digraphs D and H, a mapping f: V(D) →V(H) is a homomorphism of D to H if uv ∈ A(D) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V(D) is associated with costs c i (u), i ∈ V(H), then the cost of the homomorphism f is ∑  u ∈ V(D) c f(u)(u). For each fixed digraph H, we have the minimum cost homomorphism problem for H (abbreviated MinHOM(H)). In this discrete optimization problem, we are to decide, for an input graph D with costs c i (u), u ∈ V(D), i ∈ V(H), whether there exists a homomorphism of D to H and, if one exists, to find one of minimum cost. We obtain a dichotomy classification for the time complexity of MinHOM(H) when H is an oriented cycle. We conjecture a dichotomy classification for all digraphs with possible loops.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications. Springer, London (2000)Google Scholar
  2. 2.
    Feder, T.: Homomorphisms to oriented cycles and k-partite satisfiability. SIAM J. Discrete Math. 14, 471–480 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Feder, T., Hell, P., Rafiey, A.: List homomorphism to balanced digraphs (submitted)Google Scholar
  4. 4.
    Gupta, A., Hell, P., Karimi, M., Rafiey, A.: Minimum cost homomorphisms to reflexive digraphs. In: LATIN 2008 (to appear, 2008)Google Scholar
  5. 5.
    Gutin, G., Hell, P., Rafiey, A., Yeo, A.: Minimum Cost Homomorphisms to Proper Interval Graphs and Bigraphs. Europ. J. Combin. (to appear)Google Scholar
  6. 6.
    Gutin, G., Rafiey, A., Yeo, A.: Minimum Cost and List Homomorphisms to Semicomplete Digraphs. Discrete Appl. Math. 154, 890–897 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Gutin, G., Rafiey, A., Yeo, A.: Minimum Cost Homomorphisms to Semicomplete Multipartite Digraphs. Discrete Applied Math. (to apear)Google Scholar
  8. 8.
    Gutin, G., Rafiey, A., Yeo, A.: Minimum Cost Homomorphisms to Semicomplete Bipartite Digraphs (submitted)Google Scholar
  9. 9.
    Gutin, G., Rafiey, A., Yeo, A., Tso, M.: Level of repair analysis and minimum cost homomorphisms of graphs. Discrete Appl. Math. 154, 881–889 (2006); Preliminary version appeared. In: Megiddo, N., Xu, Y., Zhu, B. (eds.): AAIM 2005. LNCS, vol. 3521, pp. 427–439. Springer, Heidelberg (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Gutjahr, W.: Graph Colourings, PhD thesis, Free University, Berlin (1991)Google Scholar
  11. 11.
    Häggkvist, R., Hell, P., Miller, D.J., Neumann-Lara, V.: On multiplicative graphs and the product conjecture. Combinatorica 8, 63–74 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Halldorsson, M.M., Kortsarz, G., Shachnai, H.: Minimizing average completion of dedicated tasks and interval graphs. In: Goemans, M.X., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) RANDOM 2001 and APPROX 2001. LNCS, vol. 2129, pp. 114–126. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Feder, T., Hell, P., Huang, J.: List homomorphisms and circular arc graphs. Combinatorica 19, 487–505 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Hell, P., Nešetřil, J.: On the complexity of H-colouring. J. Combin. Theory B 48, 92–110 (1990)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, Oxford (2004)zbMATHGoogle Scholar
  16. 16.
    Hell, P., Zhu, X.: The existence of homomorphisms to oriented cycles. SIAM J. Discrete Math. 8, 208–222 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Jansen, K.: Approximation results for the optimum cost chromatic partition problem. J. Algorithms 34, 54–89 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Zhu, X.: A simple proof of the multipilicatively of directed cycles of prime power length. Discrete Appl. Math. 36, 333–345 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Gregory Gutin
    • 1
  • Arash Rafiey
    • 2
  • Anders Yeo
    • 1
  1. 1.Department of Computer Science Royal HollowayUniversity of LondonEghamUK
  2. 2.School of Computing ScienceSimon Fraser UniversityBurnabyCanada

Personalised recommendations