Facility Location Problems: A Parameterized View

  • Michael Fellows
  • Henning Fernau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5034)

Abstract

Facility Location can be seen as a whole family of problems which have many obvious applications in economics. They have been widely explored in the Operations Research community, from the viewpoints of approximation, heuristics, linear programming, etc. We add a new facet by initiating the study of some of these problems from a parametric point of view. Moreover, we exhibit some less obvious applications of these algorithms in the processing of semistructured documents and in computational biology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets Möbius: fast subset convolution. In: Symposium on Theory of Computing STOC, pp. 67–74. ACM Press, New York (2007)Google Scholar
  2. 2.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Trimmed Möbius inversion and graphs of bounded degree. In: Symposium on Theoretical Aspects of Computer Science STACS, IBFI, Schloss Dagstuhl, Germany, pp. 85–96 (2008)Google Scholar
  3. 3.
    Bumb, A.: Approximation algorithms for facility location problems. PhD Thesis, Univ. Twente, The Netherlands (2002)Google Scholar
  4. 4.
    Cesati, M.: The Turing way to parameterized complexity. Journal of Computer and System Sciences 67, 654–685 (2003)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Charikar, M., Guha, S., Tardos, E., Shmoys, D.S.: A constant-factor approximation algorithm for the k-median problem. Journal of Computer and System Sciences 65, 129–149 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility location problems with outliers. In: Symposium on Discrete Algorithms SODA, pp. 642–651. ACM Press, New York (2001)Google Scholar
  7. 7.
    Conklin, D., Witten, I.H.: Complexity-based induction. Machine Learning 16, 203–225 (1994)MATHGoogle Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Du, Q., Emelianenko, M., Ju, L.: Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations. SIAM Journal on Numerical Analysis 44, 102–119 (2006)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fernau, H.: Extracting minimum length Document Type Definitions in NP-hard. In: Paliouras, G., Sakakibara, Y. (eds.) ICGI 2004. LNCS (LNAI), vol. 3264, pp. 277–278. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Garofalakis, M., Gionis, A., Rastogi, R., Seshadri, S., Shim, K.: XTRACT: learning document type descriptors from XML document collections. Data Mining and Knowledge Discovery 7, 23–56 (2003)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Koivisto, M., Manila, H., Perola, M., Varilo, T., Hennah, W., Ekelund, J., Lukk, M., Peltonen, L., Ukkonen, E.: An MDL method for finding haplotype blocks and for estimating the strength of block boundaries. In: Pacific Symposium on Biocomputing 2003 (PSB 2003), pp. 502–513 (2002), http://psb.stanford.edu/psb-online/proceedings/psb03/
  13. 13.
    Shmoys, D.B., Tardos, É., Aardal, K.: Approximation algorithms for facility location problems (extended abstract). In: Symposium on Theory of Computing STOC, pp. 265–274. ACM Press, New York (1997)Google Scholar
  14. 14.
    Young, N.E.: k-medians, facility location, and the Chernoff-Wald bound. In: Symposium on Discrete Algorithms SODA, pp. 86–95. ACM Press, New York (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Michael Fellows
    • 1
  • Henning Fernau
    • 1
    • 2
  1. 1.The University of NewcastleCallaghanAustralia
  2. 2.Universität Trier, FB IV—Abteilung InformatikTrierGermany

Personalised recommendations