The Berlin Brain-Computer Interface

  • Benjamin Blankertz
  • Michael Tangermann
  • Florin Popescu
  • Matthias Krauledat
  • Siamac Fazli
  • Márton Dónaczy
  • Gabriel Curio
  • Klaus-Robert Müller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5050)

Abstract

The Berlin Brain-Computer Interface (BBCI) uses a machine learning approach to extract subject-specific patterns from high-dimensional EEG-features optimized for revealing the user’s mental state. Classical BCI application are brain actuated tools for patients such as prostheses (see Section 4.1) or mental text entry systems ([2] and see [3,4,5,6] for an overview on BCI). In these applications the BBCI uses natural motor competences of the users and specifically tailored pattern recognition algorithms for detecting the user’s intent. But beyond rehabilitation, there is a wide range of possible applications in which BCI technology is used to monitor other mental states, often even covert ones (see also [7] in the fMRI realm). While this field is still largely unexplored, two examples from our studies are exemplified in Section 4.3 and 4.4.

Keywords

Linear Discriminant Analysis Brain Computer Interface Error Index Readiness Potential Common Spatial Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blankertz, B., Tangermann, M., Popescu, F., Krauledat, M., Fazli, S., Dónaczy, M., Curio, G., Müller, K.R.: The berlin brain-computer interface. In: Graimann, B., Pfurtscheller, G. (eds.) Non-Invasive and Invasive Brain-Computer Interfaces. Springer, Heidelberg (2008) The Frontiers Collection (in review, 2008) Google Scholar
  2. 2.
    Blankertz, B., Krauledat, M., Dornhege, G., Williamson, J., Murray-Smith, R., Müller, K.R.: A Note on Brain Actuated Spelling with the Berlin Brain-Computer Interface. In: Stephanidis, C. (ed.) UAHCI 2007 (Part II). LNCS, vol. 4555, pp. 759–768. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Dornhege, G., del, R., Millán, J., Hinterberger, T., McFarland, D., Müller, K.R. (eds.): Toward Brain-Computer Interfacing. MIT Press, Cambridge (2007)Google Scholar
  4. 4.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)CrossRefGoogle Scholar
  5. 5.
    Allison, B., Wolpaw, E., Wolpaw, J.R.: Brain-computer interface systems: progress and prospects. Expert Rev. Med. Devices 4(4), 463–474 (2007)CrossRefGoogle Scholar
  6. 6.
    Pfurtscheller, G., Neuper, C., Birbaumer, N.: Human Brain-Computer Interface. In: Riehle, A., Vaadia, E. (eds.) Motor Cortex in Voluntary Movements, pp. 367–401. CRC Press, New York (2005)Google Scholar
  7. 7.
    Haynes, J., Sakai, K., Rees, G., Gilbert, S., Frith, C.: Reading hidden intentions in the human brain. Current Biology 17, 323–328 (2007)CrossRefGoogle Scholar
  8. 8.
    Blankertz, B., Dornhege, G., Lemm, S., Krauledat, M., Curio, G., Müller, K.R.: The Berlin Brain-Computer Interface: Machine learning based detection of user specific brain states. J. Universal Computer Sci. 12(6), 581–607 (2006)Google Scholar
  9. 9.
    Elbert, T., Rockstroh, B., Lutzenberger, W., Birbaumer, N.: Biofeedback of slow cortical potentials. I. Electroencephalogr Clin. Neurophysiol. 48, 293–301 (1980)CrossRefGoogle Scholar
  10. 10.
    Birbaumer, N., Kübler, A., Ghanayim, N., Hinterberger, T., Perelmouter, J., Kaiser, J., Iversen, I., Kotchoubey, B., Neumann, N., Flor, H.: The though translation device (TTD) for completly paralyzed patients. IEEE Trans. Rehab. Eng. 8(2), 190–193 (2000)CrossRefGoogle Scholar
  11. 11.
    Kornhuber, H.H., Deecke, L.: Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflügers Arch 284, 1–17 (1965)CrossRefGoogle Scholar
  12. 12.
    Lang, W., Lang, M., Uhl, F., Koska, C., Kornhuber, A., Deecke, L.: Negative cortical DC shifts preceding and accompanying simultaneous and sequential movements. Exp. Brain Res. 74(1), 99–104 (1989)CrossRefGoogle Scholar
  13. 13.
    Cui, R.Q., Huter, D., Lang, W., Deecke, L.: Neuroimage of voluntary movement: topography of the Bereitschaftspotential, a 64-channel DC current source density study. Neuroimage 9(1), 124–134 (1999)CrossRefGoogle Scholar
  14. 14.
    Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.R., Kunzmann, V., Losch, F., Curio, G.: The Berlin Brain-Computer Interface: EEG-based communication without subject training. IEEE Trans. Neural Sys. Rehab. Eng. 14(2), 147–152 (2006)CrossRefGoogle Scholar
  15. 15.
    Blankertz, B., Dornhege, G., Krauledat, M., Kunzmann, V., Losch, F., Curio, G., Müller, K.R.: The berlin brain-computer interface: Machine-learning based detection of user specific brain states. In: Dornhege, G., del, R., Millán, J., Hinterberger, T., McFarland, D., Müller, K.R. (eds.) Toward Brain-Computer Interfacing, pp. 85–101. MIT press, Cambridge (2007)Google Scholar
  16. 16.
    Blankertz, B., Dornhege, G., Schäfer, C., Krepki, R., Kohlmorgen, J., Müller, K.R., Kunzmann, V., Losch, F., Curio, G.: Boosting bit rates and error detection for the classification of fast-paced motor commands based on single-trial EEG analysis. IEEE Trans. Neural Sys. Rehab. Eng. 11(2), 127–131 (2003)CrossRefGoogle Scholar
  17. 17.
    Krusienski, D., Schalk, G., McFarland, D.J., Wolpaw, J.: A mu-rhythm matched filter for continuous control of a brain-computer interface. IEEE Trans. Biomed. Eng. 54(2), 273–280 (2007)CrossRefGoogle Scholar
  18. 18.
    Nikulin, V.V., Brismar, T.: Phase synchronization between alpha and beta oscillations in the human electroencephalogram. Neuroscience 137, 647–657 (2006)CrossRefGoogle Scholar
  19. 19.
    Pfurtscheller, G., Lopes da Silva, F.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)CrossRefGoogle Scholar
  20. 20.
    Falkenstein, M., Hoormann, J., Christ, S., Hohnsbein, J.: ERP components on reaction errors and their functional significance: a tutorial. Biol. Psychol. 51(2-3), 87–107 (2000)CrossRefGoogle Scholar
  21. 21.
    Falkenstein, M., Hohnsbein, J., Hoormann, J., Blanke, L.: Effects of errors in choice reaction tasks on the ERP under focused and divided attention. In: Brunia, C., Gaillard, A., Kok, A. (eds.) Psychophysiological Brain Research, pp. 192–195. Tilburg University Press, Tilburg (1990)Google Scholar
  22. 22.
    Gehring, W., Coles, M., Meyer, D., Donchin, E.: The error-related negativity: an event-related brain potential accompanying errors. Psychophysiology 27, 34 (1993)Google Scholar
  23. 23.
    Vidal, F., Hasbroucq, T., Grapperon, J., Bonnet, M.: Is the ’error negativity’ specific to errors? Biological Psychology 51, 109–128 (2000)CrossRefGoogle Scholar
  24. 24.
    Miltner, W.H.R., Braun, C.H., Coles, M.G.H.: Event-related brain potentials following incorrect feedback in a time-estimation task: Evidence for a ‘generic’ neural system for error-detection. J. Cogn. Neurosci. 9, 788–798 (1997)CrossRefGoogle Scholar
  25. 25.
    Schie, H.T.v., Mars, R.B., Coles, M.G., Bekkering, H.: Modulation of activity in medial frontal and motor cortices during error observation. Nat. Neurosci. 7(5), 549–554 (2004)CrossRefGoogle Scholar
  26. 26.
    Ferrez, P., Millán, J.: Error-related eeg potentials generated during simulated brain-computer interaction. IEEE Trans. Biomed. Eng. (accepted)Google Scholar
  27. 27.
    Nunez, P.L., Srinivasan, R., Westdorp, A.F., Wijesinghe, R.S., Tucker, D.M., Silberstein, R.B., Cadusch, P.J.: EEG coherency I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin. Neurophysiol. 103(5), 499–515 (1997)CrossRefGoogle Scholar
  28. 28.
    Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Müller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Proc. Magazine 25(1), 41–56 (2008)CrossRefGoogle Scholar
  29. 29.
    McFarland, D.J., McCane, L.M., David, S.V., Wolpaw, J.R.: Spatial filter selection for EEG-based communication. Electroencephalogr Clin. Neurophysiol. 103, 386–394 (1997)CrossRefGoogle Scholar
  30. 30.
    Hill, N., Lal, T.N., Tangermann, M., Hinterberger, T., Widman, G., Elger, C.E., Schölkopf, B., Birbaumer, N.: Classifying event-related desynchronization in EEG, ECoG and MEG signals. In: Dornhege, G., del, R., Millán, J., Hinterberger, T., McFarland, D., Müller, K.R. (eds.) Toward Brain-Computer Interfacing, pp. 235–260. MIT press, Cambridge (2007)Google Scholar
  31. 31.
    Grosse-Wentrup, M., Gramann, K., Buss, M.: Adaptive spatial filters with predefined region of interest for EEG based brain-computer-interfaces. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems 19, pp. 537–544 (2007)Google Scholar
  32. 32.
    Dornhege, G., Krauledat, M., Müller, K.R., Blankertz, B.: General signal processing and machine learning tools for BCI. In: Dornhege, G., del, R., Millán, J., Hinterberger, T., McFarland, D., Müller, K.R. (eds.) Toward Brain-Computer Interfacing, pp. 207–233. MIT Press, Cambridge (2007)Google Scholar
  33. 33.
    Parra, L.C., Spence, C.D., Gerson, A.D., Sajda, P.: Recipes for the linear analysis of EEG. NeuroImage 28(2), 326–341 (2005)CrossRefGoogle Scholar
  34. 34.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, San Diego (1990)MATHGoogle Scholar
  35. 35.
    Guger, C., Ramoser, H., Pfurtscheller, G.: Real-time EEG analysis with subject-specific spatial patterns for a Brain Computer Interface (BCI). IEEE Trans. Neural Sys. Rehab. Eng. 8(4), 447–456 (2000)CrossRefGoogle Scholar
  36. 36.
    Ramoser, H., Müller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehab. Eng. 8(4), 441–446 (2000)CrossRefGoogle Scholar
  37. 37.
    Lemm, S., Blankertz, B., Curio, G., Müller, K.R.: Spatio-spectral filters for improving classification of single trial EEG. IEEE Trans. Biomed. Eng. 52(9), 1541–1548 (2005)CrossRefGoogle Scholar
  38. 38.
    Dornhege, G., Blankertz, B., Krauledat, M., Losch, F., Curio, G., Müller, K.R.: Optimizing spatio-temporal filters for improving brain-computer interfacing. In: Advances in Neural Inf. Proc. Systems (NIPS 2005), vol. 18, pp. 315–322. MIT Press, Cambridge (2006)Google Scholar
  39. 39.
    Tomioka, R., Aihara, K., Müller, K.R.: Logistic regression for single trial EEG classification. In: Schölkopf, B., Platt, J., Hoffman, T. (eds.) Advances in Neural Information Processing Systems 19, pp. 1377–1384. MIT Press, Cambridge (2007)Google Scholar
  40. 40.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley & Sons, Chichester (2001)MATHGoogle Scholar
  41. 41.
    Friedman, J.H.: Regularized discriminant analysis. J Amer. Statist. Assoc. 84(405), 165–175 (1989)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Neuper, C., Scherer, R., Reiner, M., Pfurtscheller, G.: Imagery of motor actions: Differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res. Cogn. Brain Res. 25(3), 668–677 (2005)CrossRefGoogle Scholar
  43. 43.
    Nikulin, V.V., Hohlefeld, F.U., Jacobs, A.M., Curio, G.: Quasi-movements: A novel motor-cognitive phenomenon. In: Neuropsychologia (in press, 2008)Google Scholar
  44. 44.
    Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.R., Curio, G.: The non-invasive Berlin Brain-Computer Interface: Fast acquisition of effective performance in untrained subjects. NeuroImage 37(2), 539–550 (2007)CrossRefGoogle Scholar
  45. 45.
    Wolpaw, J.R., McFarland, D.J., Vaughan, T.M.: Brain-computer interface research at the Wadsworth Center. IEEE Trans. Rehab. Eng. 8(2), 222–226 (2000)CrossRefGoogle Scholar
  46. 46.
    Schlögl, A., Kronegg, J., Huggins, J., Mason, S.G.: Evaluation Criteria for BCI Research. In: Dornhege, G., del, R., Millán, J., Hinterberger, T., McFarland, D., Müller, K.R. (eds.) Towards Brain-Computer Interfacing, pp. 297–312. MIT press, Cambridge (2007)Google Scholar
  47. 47.
    Dornhege, G.: Increasing Information Transfer Rates for Brain-Computer Interfacing. PhD thesis, University of Potsdam (2006)Google Scholar
  48. 48.
    Müller, K.R., Blankertz, B.: Toward noninvasive brain-computer interfaces. IEEE Signal Proc. Magazine 23(5), 125–128 (2006)Google Scholar
  49. 49.
    Blankertz, B., Losch, F., Krauledat, M., Dornhege, G., Curio, G., Müller, K.R.: The Berlin Brain-Computer Interface: Accurate performance from first-session in BCI-naive subjects. IEEE Trans. Biomed. Eng. (accepted, 2008)Google Scholar
  50. 50.
    Kübler, A., Müller, K.R.: An introduction to brain computer interfacing. In: Dornhege, G., del, R., Millán, J., Hinterberger, T., McFarland, D., Müller, K.R. (eds.) Toward Brain-Computer Interfacing, pp. 1–25. MIT press, Cambridge (2007)Google Scholar
  51. 51.
    Schalk, G., Wolpaw, J.R., McFarland, D.J., Pfurtscheller, G.: EEG-based communication: presence of an error potential. Clin. Neurophysiol 111, 2138–2144 (2000)CrossRefGoogle Scholar
  52. 52.
    Blankertz, B., Schäfer, C., Dornhege, G., Curio, G.: Single Trial Detection of EEG Error Potentials: A Tool for Increasing BCI Transmission Rates. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 1137–1143. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  53. 53.
    Parra, L., Spence, C., Gerson, A., Sajda, P.: Response error correction - a demonstration of improved human-machine performance using real-time EEG monitoring. IEEE Trans. Neural. Sys. Rehab. Eng. 11(2), 173–177 (2003)CrossRefGoogle Scholar
  54. 54.
    Ferrez, P., Millán, J.: You are wrong! – automatic detection of interaction errors from brain waves. In: 19th International Joint Conference on Artificial Intelligence, pp. 1413–1418 (2005)Google Scholar
  55. 55.
    Kohlmorgen, J., Dornhege, G., Braun, M., Blankertz, B., Müller, K.R., Curio, G., Hagemann, K., Bruns, A., Schrauf, M., Kincses, W.: Improving human performance in a real operating environment through real-time mental workload detection. In: Dornhege, G., del, R., Millán, J., Hinterberger, T., McFarland, D., Müller, K.R. (eds.) Toward Brain-Computer Interfacing, pp. 409–422. MIT press, Cambridge (2007)Google Scholar
  56. 56.
    Müller, K.R., Tangermann, M., Dornhege, G., Krauledat, M., Curio, G., Blankertz, B.: Machine learning for real-time single-trial EEG-analysis: From brain-computer interfacing to mental state monitoring. J Neurosci. Methods 167(1), 82–90 (2008)CrossRefGoogle Scholar
  57. 57.
    Popescu, F., Fazli, S., Badower, Y., Blankertz, B., Müller, K.R.: Single trial classification of motor imagination using 6 dry EEG electrodes. PLoS ONE 2(7) (2007)Google Scholar
  58. 58.
    Fazli, S., Dónaczy, M., Kawanabe, M., Popescu, F.: Asynchronous, adaptive BCI using movement imagination training and rest-state inference. In: IASTED’s Proceedings on Artificial Intelligence and Applications, pp. 85–90 (2008)Google Scholar
  59. 59.
    Krauledat, M., Dornhege, G., Blankertz, B., Curio, G., Müller, K.R.: The Berlin brain-computer interface for rapid response. Biomed. Tech. 49(1), 61–62 (2004)Google Scholar
  60. 60.
    Kübler, A., Kotchoubey, B., Kaiser, J., Wolpaw, J., Birbaumer, N.: Brain-computer communication: Unlocking the locked in. Psychol. Bull 127(3), 358–375 (2001)CrossRefGoogle Scholar
  61. 61.
    Kübler, A., Nijboer, F., Mellinger, J., Vaughan, T.M., Pawelzik, H., Schalk, G., McFarland, D.J., Birbaumer, N., Wolpaw, J.R.: Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology 64(10), 1775–1777 (2005)CrossRefGoogle Scholar
  62. 62.
    Birbaumer, N., Cohen, L.: Brain-computer interfaces: communication and restoration of movement in paralysis. J. Physiol. 579, 621–636 (2007)CrossRefGoogle Scholar
  63. 63.
    Birbaumer, N., Weber, C., Neuper, C., Buch, E., Haapen, K., Cohen, L.: Physiological regulation of thinking: brain-computer interface (BCI) research. Prog. Brain Res. 159, 369–391 (2006)CrossRefGoogle Scholar
  64. 64.
    Hochberg, L., Serruya, M., Friehs, G., Mukand, J., Saleh, M., Caplan, A., Branner, A., Chen, D., Penn, R., Donoghue, J.: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099), 164–171 (2006)CrossRefGoogle Scholar
  65. 65.
    Krepki, R., Blankertz, B., Curio, G., Müller, K.R.: The Berlin Brain-Computer Interface (BBCI): towards a new communication channel for online control in gaming applications. Journal of Multimedia Tools and Applications 33(1), 73–90 (2007)CrossRefGoogle Scholar
  66. 66.
    Krepki, R., Curio, G., Blankertz, B., Müller, K.R.: Berlin brain-computer interface - the hci communication channel for discovery. Int. J. Hum. Comp. Studies 65, 460–477 (2007) Special Issue on Ambient IntelligenceCrossRefGoogle Scholar
  67. 67.
    Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H., Pfurtscheller, G.: Brain-computer communication: motivation, aim, and impact of exploring a virtual apartment. IEEE Trans. Neural Sys. Rehab. Eng. 15(4), 473–482 (2007)CrossRefGoogle Scholar
  68. 68.
    Gerson, A., Parra, L., Sajda, P.: Cortically coupled computer vision for rapid image search. IEEE Trans. Neural. Sys. Rehab. Eng. 14(2), 174–179 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Benjamin Blankertz
    • 1
    • 2
  • Michael Tangermann
    • 1
  • Florin Popescu
    • 2
  • Matthias Krauledat
    • 1
  • Siamac Fazli
    • 2
  • Márton Dónaczy
    • 2
  • Gabriel Curio
    • 3
  • Klaus-Robert Müller
    • 1
    • 2
  1. 1.Berlin Institute of TechnologyMachine Learning LaboratoryBerlinGermany
  2. 2.Fraunhofer FIRST (IDA)BerlinGermany
  3. 3.Campus Benjamin FranklinCharité University Medicine BerlinGermany

Personalised recommendations